Spaces:
Runtime error
Runtime error
File size: 17,460 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Sparse Mixer encoder network.
Based on ["Sparse Mixers: Combining MoE and Mixing to build a more efficient
BERT"](https://arxiv.org/abs/2205.12399).
"""
# pylint: disable=g-classes-have-attributes
from typing import Any, Callable, Optional, Sequence, Union
from absl import logging
import tensorflow as tf, tf_keras
from official.modeling import tf_utils
from official.nlp.modeling import layers
_Activation = Union[str, Callable[..., Any]]
_Initializer = Union[str, tf_keras.initializers.Initializer]
_approx_gelu = lambda x: tf_keras.activations.gelu(x, approximate=True)
class SparseMixer(tf_keras.layers.Layer):
"""Sparse Mixer encoder network.
Based on ["Sparse Mixers: Combining MoE and Mixing to build a more efficient
BERT"](https://arxiv.org/abs/2205.12399). Sparse Mixer is an efficient
encoder network that replaces typical Transformer encoder blocks with a
combination of linear mixing and sparsely activated Mixture-of-Experts (MoE)
sublayers.
This implementation defaults to the canonical Sparse Mixer Base model. To use
the "Fast Sparse Mixer" configuration, set `*_capacity_factor`=0.5. This
yields a sparser and faster variant of the canonical Sparse Mixer model, in
which each expert processes roughly 50% less tokens.
Notes:
- The underlying MoeLayer uses the Keras add_loss() and add_metric() APIs to
propagate auxiliary MoE losses and metrics. Any model using this network,
should collect these losses and, if desired, metrics.
- The input length is fixed to 'max_sequence_length' to accomodate the mixing
mechanisms.
Args:
vocab_size: The size of the token vocabulary.
hidden_size: The size of the transformer hidden layers.
num_layers: The number of transformer layers.
moe_layers: Specifies which layers, if any, should be sparsely activated
Mixture-of-Experts (MoE) layers. The remaining [0, num_layers) setminus
moe_layers will use the vanilla MLP sublayers. Defaults to placing MoE
layers in the middle of the model.
attention_layers: Specifies which layers, if any, should be attention layers
in the encoder. The remaining [0, num_layers) setminus attention_layers
will use the specified `mixing_mechanism`. If using attention layers, a
good rule of thumb is to place them in the final few layers.
num_experts: Number of experts. Experts are themselves MLP modules, with the
same `inner_dim` and `inner_activation` as the vanilla MLP sublayers.
train_capacity_factor: Scaling factor to increase the expert token capacity
during training. See layers.MoeLayer for further details. The "Fast Sparse
Mixer" increases model sparsity (and speed) by using a capacity factor of
0.5.
eval_capacity_factor: As above, but used during evaluation.
max_group_size: The total number of tokens on each device is subdivided into
groups of this size. Router computations are then performed on a per-group
basis. See layers.MoeLayer for further details.
mixing_mechanism: Type of mixing mechanism used in place of self-attention
layers. Defaults to 'Linear' mixing.
use_fft: Only used for spectral mixing mechanisms. Determines whether to use
Fast Fourier Transform (True) or the Discrete Fourier Transform (DFT)
matrix (False; default) to compute the Fourier Transform. See
layers.FourierTransformLayer or layers.HartleyTransformLayer for advice.
num_attention_heads: The number of attention heads for each transformer. The
hidden size must be divisible by the number of attention heads.
max_sequence_length: The only sequence length that this encoder can consume.
This determines the variable shape for positional embeddings and the size
of the mixing matrices.
type_vocab_size: The number of types that the 'type_ids' input can take.
inner_dim: The output dimension of the first Dense layer in a two-layer
feedforward network for each transformer.
inner_activation: The activation for the first Dense layer in a two-layer
feedforward network for each transformer.
output_dropout: Dropout probability for the post-attention and output
dropout.
attention_dropout: The dropout rate to use for the attention layers within
the transformer layers.
initializer: The initializer to use for all weights in this encoder.
output_range: The sequence output range, [0, output_range), by slicing the
target sequence of the last transformer layer. `None` means the entire
target sequence will attend to the source sequence, which yields the full
output.
embedding_width: The width of the word embeddings. If the embedding width is
not equal to hidden size, embedding parameters will be factorized into two
matrices in the shape of ['vocab_size', 'embedding_width'] and
['embedding_width', 'hidden_size'] ('embedding_width' is usually much
smaller than 'hidden_size').
embedding_layer: An optional Layer instance which will be called to generate
embeddings for the input word IDs.
norm_first: Whether to normalize inputs to attention and intermediate dense
layers. If set False, output of attention and intermediate dense layers is
normalized.
with_dense_inputs: Whether to accept dense embeddings as the input.
export_metrics: Whether to export metrics using Keras add_metric API.
"""
def __init__(
self,
vocab_size: int,
hidden_size: int = 512,
num_layers: int = 14,
moe_layers: Sequence[int] = (5, 6, 7, 8),
attention_layers: Sequence[int] = (10, 11, 12, 13),
num_experts: int = 16,
train_capacity_factor: float = 1.,
eval_capacity_factor: float = 1.,
examples_per_group: float = 1.,
mixing_mechanism: layers.MixingMechanism = layers.MixingMechanism.LINEAR,
use_fft: bool = False,
num_attention_heads: int = 8,
max_sequence_length: int = 512,
type_vocab_size: int = 16,
inner_dim: int = 2048,
inner_activation: _Activation = _approx_gelu,
output_dropout: float = 0.1,
attention_dropout: float = 0.1,
initializer: _Initializer = tf_keras.initializers.TruncatedNormal(
stddev=0.02),
output_range: Optional[int] = None,
embedding_width: Optional[int] = None,
embedding_layer: Optional[tf_keras.layers.Layer] = None,
norm_first: bool = False,
with_dense_inputs: bool = False,
export_metrics: bool = True,
**kwargs):
super().__init__(**kwargs)
activation = tf_keras.activations.get(inner_activation)
initializer = tf_keras.initializers.get(initializer)
if embedding_width is None:
embedding_width = hidden_size
self._config = {
'vocab_size': vocab_size,
'hidden_size': hidden_size,
'num_layers': num_layers,
'moe_layers': moe_layers,
'num_experts': num_experts,
'train_capacity_factor': train_capacity_factor,
'eval_capacity_factor': eval_capacity_factor,
'examples_per_group': examples_per_group,
'mixing_mechanism': mixing_mechanism,
'use_fft': use_fft,
'attention_layers': attention_layers,
'num_attention_heads': num_attention_heads,
'max_sequence_length': max_sequence_length,
'type_vocab_size': type_vocab_size,
'inner_dim': inner_dim,
'inner_activation': tf_keras.activations.serialize(activation),
'output_dropout': output_dropout,
'attention_dropout': attention_dropout,
'initializer': tf_keras.initializers.serialize(initializer),
'output_range': output_range,
'embedding_width': embedding_width,
'embedding_layer': embedding_layer,
'norm_first': norm_first,
'with_dense_inputs': with_dense_inputs,
'export_metrics': export_metrics,
}
if embedding_layer is None:
self._embedding_layer = layers.OnDeviceEmbedding(
vocab_size=vocab_size,
embedding_width=embedding_width,
initializer=tf_utils.clone_initializer(initializer),
name='word_embeddings')
else:
self._embedding_layer = embedding_layer
self._position_embedding_layer = layers.PositionEmbedding(
initializer=tf_utils.clone_initializer(initializer),
max_length=max_sequence_length,
name='position_embedding')
self._type_embedding_layer = layers.OnDeviceEmbedding(
vocab_size=type_vocab_size,
embedding_width=embedding_width,
initializer=tf_utils.clone_initializer(initializer),
use_one_hot=True,
name='type_embeddings')
self._embedding_norm_layer = tf_keras.layers.LayerNormalization(
name='embeddings/layer_norm', axis=-1, epsilon=1e-12, dtype=tf.float32)
self._embedding_dropout = tf_keras.layers.Dropout(
rate=output_dropout, name='embedding_dropout')
# We project the 'embedding' output to 'hidden_size' if it is not already
# 'hidden_size'.
self._embedding_projection = None
if embedding_width != hidden_size:
self._embedding_projection = tf_keras.layers.EinsumDense(
'...x,xy->...y',
output_shape=hidden_size,
bias_axes='y',
kernel_initializer=tf_utils.clone_initializer(initializer),
name='embedding_projection')
self._transformer_layers = []
for layer in range(num_layers):
if layer in attention_layers:
mixing_layer = layers.MultiHeadAttention(
num_heads=num_attention_heads,
key_dim=int(hidden_size // num_attention_heads),
dropout=attention_dropout,
use_bias=True,
kernel_initializer=tf_utils.clone_initializer(initializer),
name='self_attention',
)
else:
mixing_layer = self._init_mixing_sublayer(layer)
if layer in moe_layers:
feedforward_layer = layers.MoeLayer(
experts=layers.FeedForwardExperts(
num_experts=num_experts,
d_ff=inner_dim,
output_dropout=output_dropout,
activation=inner_activation,
kernel_initializer=tf_utils.clone_initializer(initializer),
name='experts'),
router=layers.ExpertsChooseMaskedRouter(
num_experts=num_experts,
kernel_initializer=tf_utils.clone_initializer(initializer),
export_metrics=export_metrics,
name='router'),
train_capacity_factor=train_capacity_factor,
eval_capacity_factor=eval_capacity_factor,
examples_per_group=examples_per_group,
name='moe')
else:
feedforward_layer = None # Fallback to default (dense) MLP class
block = layers.TransformerScaffold(
num_attention_heads=num_attention_heads,
inner_dim=inner_dim,
inner_activation=inner_activation,
attention_cls=mixing_layer,
feedforward_cls=feedforward_layer,
output_dropout=output_dropout,
attention_dropout=attention_dropout,
norm_first=norm_first,
output_range=output_range if layer == num_layers - 1 else None,
kernel_initializer=tf_utils.clone_initializer(initializer),
name='transformer/layer_%d' % layer)
self._transformer_layers.append(block)
self._attention_mask_layer = layers.SelfAttentionMask(
name='self_attention_mask')
self._pooler_layer = tf_keras.layers.Dense(
units=hidden_size,
activation='tanh',
kernel_initializer=tf_utils.clone_initializer(initializer),
name='pooler_transform')
if with_dense_inputs:
self.inputs = dict(
# The total length of token ids and dense inputs still has to be
# max_sequence_length. It is checked in call().
input_word_ids=tf_keras.Input(shape=(None,), dtype=tf.int32),
input_mask=tf_keras.Input(shape=(None,), dtype=tf.int32),
input_type_ids=tf_keras.Input(shape=(None,), dtype=tf.int32),
dense_inputs=tf_keras.Input(
shape=(None, embedding_width), dtype=tf.float32),
dense_mask=tf_keras.Input(shape=(None,), dtype=tf.int32),
dense_type_ids=tf_keras.Input(shape=(None,), dtype=tf.int32),
)
else:
self.inputs = dict(
input_word_ids=tf_keras.Input(
shape=(max_sequence_length,), dtype=tf.int32),
input_mask=tf_keras.Input(
shape=(max_sequence_length,), dtype=tf.int32),
input_type_ids=tf_keras.Input(
shape=(max_sequence_length,), dtype=tf.int32))
self._max_sequence_length = max_sequence_length
def call(self, inputs):
word_embeddings = None
if isinstance(inputs, dict):
word_ids = inputs.get('input_word_ids')
mask = inputs.get('input_mask')
type_ids = inputs.get('input_type_ids')
word_embeddings = inputs.get('input_word_embeddings', None)
dense_inputs = inputs.get('dense_inputs', None)
dense_mask = inputs.get('dense_mask', None)
dense_type_ids = inputs.get('dense_type_ids', None)
else:
raise ValueError('Unexpected inputs type (%s) to %s.' %
(type(inputs), self.__class__))
if word_embeddings is None:
word_embeddings = self._embedding_layer(word_ids)
if dense_inputs is not None:
# Concat the dense embeddings at sequence end.
word_embeddings = tf.concat([word_embeddings, dense_inputs], axis=1)
type_ids = tf.concat([type_ids, dense_type_ids], axis=1)
mask = tf.concat([mask, dense_mask], axis=1)
# SparseMixer: Sequence length must be the same as `max_sequence_length`.
word_embeddings = tf.ensure_shape(word_embeddings,
[None, self._max_sequence_length, None])
# Absolute position embeddings.
position_embeddings = self._position_embedding_layer(word_embeddings)
type_embeddings = self._type_embedding_layer(type_ids)
embeddings = word_embeddings + position_embeddings + type_embeddings
embeddings = self._embedding_norm_layer(embeddings)
embeddings = self._embedding_dropout(embeddings)
if self._embedding_projection is not None:
embeddings = self._embedding_projection(embeddings)
attention_mask = self._attention_mask_layer(embeddings, mask)
encoder_outputs = []
x = embeddings
for layer in self._transformer_layers:
x = layer([x, attention_mask])
encoder_outputs.append(x)
last_encoder_output = encoder_outputs[-1]
first_token_tensor = last_encoder_output[:, 0, :]
pooled_output = self._pooler_layer(first_token_tensor)
output = dict(
sequence_output=encoder_outputs[-1],
pooled_output=pooled_output,
encoder_outputs=encoder_outputs)
return output
def get_embedding_table(self):
return self._embedding_layer.embeddings
def get_embedding_layer(self):
return self._embedding_layer
def get_config(self):
return dict(self._config)
@property
def transformer_layers(self):
"""List of Transformer layers in the encoder."""
return self._transformer_layers
@property
def pooler_layer(self):
"""The pooler dense layer after the transformer layers."""
return self._pooler_layer
@classmethod
def from_config(cls, config, custom_objects=None):
if 'embedding_layer' in config and config['embedding_layer'] is not None:
warn_string = (
'You are reloading a model that was saved with a '
'potentially-shared embedding layer object. If you contine to '
'train this model, the embedding layer will no longer be shared. '
'To work around this, load the model outside of the Keras API.')
print('WARNING: ' + warn_string)
logging.warn(warn_string)
return cls(**config)
def _init_mixing_sublayer(self, layer: int):
"""Initializes config-dependent mixing sublayer."""
if self._config['mixing_mechanism'] == layers.MixingMechanism.FOURIER:
mixing_sublayer = layers.FourierTransformLayer(
use_fft=self._config['use_fft'], name='fourier_transform')
elif self._config['mixing_mechanism'] == layers.MixingMechanism.HARTLEY:
mixing_sublayer = layers.HartleyTransformLayer(
use_fft=self._config['use_fft'], name='hartley_transform')
elif self._config['mixing_mechanism'] == layers.MixingMechanism.LINEAR:
mixing_sublayer = layers.LinearTransformLayer(
kernel_initializer=tf_utils.clone_initializer(
self._config['initializer']),
name='linear_transform')
else:
raise ValueError('Unsupported mixing mechanism: %s' %
self._config['mixing_mechanism'])
return mixing_sublayer
|