File size: 17,460 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Sparse Mixer encoder network.

Based on ["Sparse Mixers: Combining MoE and Mixing to build a more efficient
BERT"](https://arxiv.org/abs/2205.12399).
"""
# pylint: disable=g-classes-have-attributes

from typing import Any, Callable, Optional, Sequence, Union
from absl import logging
import tensorflow as tf, tf_keras

from official.modeling import tf_utils
from official.nlp.modeling import layers

_Activation = Union[str, Callable[..., Any]]
_Initializer = Union[str, tf_keras.initializers.Initializer]

_approx_gelu = lambda x: tf_keras.activations.gelu(x, approximate=True)


class SparseMixer(tf_keras.layers.Layer):
  """Sparse Mixer encoder network.

  Based on ["Sparse Mixers: Combining MoE and Mixing to build a more efficient
  BERT"](https://arxiv.org/abs/2205.12399). Sparse Mixer is an efficient
  encoder network that replaces typical Transformer encoder blocks with a
  combination of linear mixing and sparsely activated Mixture-of-Experts (MoE)
  sublayers.

  This implementation defaults to the canonical Sparse Mixer Base model. To use
  the "Fast Sparse Mixer" configuration, set `*_capacity_factor`=0.5. This
  yields a sparser and faster variant of the canonical Sparse Mixer model, in
  which each expert processes roughly 50% less tokens.

  Notes:
  - The underlying MoeLayer uses the Keras add_loss() and add_metric() APIs to
    propagate auxiliary MoE losses and metrics. Any model using this network,
    should collect these losses and, if desired, metrics.
  - The input length is fixed to 'max_sequence_length' to accomodate the mixing
    mechanisms.

  Args:
    vocab_size: The size of the token vocabulary.
    hidden_size: The size of the transformer hidden layers.
    num_layers: The number of transformer layers.
    moe_layers: Specifies which layers, if any, should be sparsely activated
      Mixture-of-Experts (MoE) layers. The remaining [0, num_layers) setminus
      moe_layers will use the vanilla MLP sublayers. Defaults to placing MoE
      layers in the middle of the model.
    attention_layers: Specifies which layers, if any, should be attention layers
      in the encoder. The remaining [0, num_layers) setminus attention_layers
      will use the specified `mixing_mechanism`. If using attention layers, a
      good rule of thumb is to place them in the final few layers.
    num_experts: Number of experts. Experts are themselves MLP modules, with the
      same `inner_dim` and `inner_activation` as the vanilla MLP sublayers.
    train_capacity_factor: Scaling factor to increase the expert token capacity
      during training. See layers.MoeLayer for further details. The "Fast Sparse
      Mixer" increases model sparsity (and speed) by using a capacity factor of
      0.5.
    eval_capacity_factor: As above, but used during evaluation.
    max_group_size: The total number of tokens on each device is subdivided into
      groups of this size. Router computations are then performed on a per-group
      basis. See layers.MoeLayer for further details.
    mixing_mechanism: Type of mixing mechanism used in place of self-attention
      layers. Defaults to 'Linear' mixing.
    use_fft: Only used for spectral mixing mechanisms. Determines whether to use
      Fast Fourier Transform (True) or the Discrete Fourier Transform (DFT)
      matrix (False; default) to compute the Fourier Transform. See
      layers.FourierTransformLayer or layers.HartleyTransformLayer for advice.
    num_attention_heads: The number of attention heads for each transformer. The
      hidden size must be divisible by the number of attention heads.
    max_sequence_length: The only sequence length that this encoder can consume.
      This determines the variable shape for positional embeddings and the size
      of the mixing matrices.
    type_vocab_size: The number of types that the 'type_ids' input can take.
    inner_dim: The output dimension of the first Dense layer in a two-layer
      feedforward network for each transformer.
    inner_activation: The activation for the first Dense layer in a two-layer
      feedforward network for each transformer.
    output_dropout: Dropout probability for the post-attention and output
      dropout.
    attention_dropout: The dropout rate to use for the attention layers within
      the transformer layers.
    initializer: The initializer to use for all weights in this encoder.
    output_range: The sequence output range, [0, output_range), by slicing the
      target sequence of the last transformer layer. `None` means the entire
      target sequence will attend to the source sequence, which yields the full
      output.
    embedding_width: The width of the word embeddings. If the embedding width is
      not equal to hidden size, embedding parameters will be factorized into two
      matrices in the shape of ['vocab_size', 'embedding_width'] and
      ['embedding_width', 'hidden_size'] ('embedding_width' is usually much
      smaller than 'hidden_size').
    embedding_layer: An optional Layer instance which will be called to generate
      embeddings for the input word IDs.
    norm_first: Whether to normalize inputs to attention and intermediate dense
      layers. If set False, output of attention and intermediate dense layers is
      normalized.
    with_dense_inputs: Whether to accept dense embeddings as the input.
    export_metrics: Whether to export metrics using Keras add_metric API.
  """

  def __init__(
      self,
      vocab_size: int,
      hidden_size: int = 512,
      num_layers: int = 14,
      moe_layers: Sequence[int] = (5, 6, 7, 8),
      attention_layers: Sequence[int] = (10, 11, 12, 13),
      num_experts: int = 16,
      train_capacity_factor: float = 1.,
      eval_capacity_factor: float = 1.,
      examples_per_group: float = 1.,
      mixing_mechanism: layers.MixingMechanism = layers.MixingMechanism.LINEAR,
      use_fft: bool = False,
      num_attention_heads: int = 8,
      max_sequence_length: int = 512,
      type_vocab_size: int = 16,
      inner_dim: int = 2048,
      inner_activation: _Activation = _approx_gelu,
      output_dropout: float = 0.1,
      attention_dropout: float = 0.1,
      initializer: _Initializer = tf_keras.initializers.TruncatedNormal(
          stddev=0.02),
      output_range: Optional[int] = None,
      embedding_width: Optional[int] = None,
      embedding_layer: Optional[tf_keras.layers.Layer] = None,
      norm_first: bool = False,
      with_dense_inputs: bool = False,
      export_metrics: bool = True,
      **kwargs):
    super().__init__(**kwargs)

    activation = tf_keras.activations.get(inner_activation)
    initializer = tf_keras.initializers.get(initializer)

    if embedding_width is None:
      embedding_width = hidden_size

    self._config = {
        'vocab_size': vocab_size,
        'hidden_size': hidden_size,
        'num_layers': num_layers,
        'moe_layers': moe_layers,
        'num_experts': num_experts,
        'train_capacity_factor': train_capacity_factor,
        'eval_capacity_factor': eval_capacity_factor,
        'examples_per_group': examples_per_group,
        'mixing_mechanism': mixing_mechanism,
        'use_fft': use_fft,
        'attention_layers': attention_layers,
        'num_attention_heads': num_attention_heads,
        'max_sequence_length': max_sequence_length,
        'type_vocab_size': type_vocab_size,
        'inner_dim': inner_dim,
        'inner_activation': tf_keras.activations.serialize(activation),
        'output_dropout': output_dropout,
        'attention_dropout': attention_dropout,
        'initializer': tf_keras.initializers.serialize(initializer),
        'output_range': output_range,
        'embedding_width': embedding_width,
        'embedding_layer': embedding_layer,
        'norm_first': norm_first,
        'with_dense_inputs': with_dense_inputs,
        'export_metrics': export_metrics,
    }

    if embedding_layer is None:
      self._embedding_layer = layers.OnDeviceEmbedding(
          vocab_size=vocab_size,
          embedding_width=embedding_width,
          initializer=tf_utils.clone_initializer(initializer),
          name='word_embeddings')
    else:
      self._embedding_layer = embedding_layer

    self._position_embedding_layer = layers.PositionEmbedding(
        initializer=tf_utils.clone_initializer(initializer),
        max_length=max_sequence_length,
        name='position_embedding')

    self._type_embedding_layer = layers.OnDeviceEmbedding(
        vocab_size=type_vocab_size,
        embedding_width=embedding_width,
        initializer=tf_utils.clone_initializer(initializer),
        use_one_hot=True,
        name='type_embeddings')

    self._embedding_norm_layer = tf_keras.layers.LayerNormalization(
        name='embeddings/layer_norm', axis=-1, epsilon=1e-12, dtype=tf.float32)

    self._embedding_dropout = tf_keras.layers.Dropout(
        rate=output_dropout, name='embedding_dropout')

    # We project the 'embedding' output to 'hidden_size' if it is not already
    # 'hidden_size'.
    self._embedding_projection = None
    if embedding_width != hidden_size:
      self._embedding_projection = tf_keras.layers.EinsumDense(
          '...x,xy->...y',
          output_shape=hidden_size,
          bias_axes='y',
          kernel_initializer=tf_utils.clone_initializer(initializer),
          name='embedding_projection')

    self._transformer_layers = []
    for layer in range(num_layers):
      if layer in attention_layers:
        mixing_layer = layers.MultiHeadAttention(
            num_heads=num_attention_heads,
            key_dim=int(hidden_size // num_attention_heads),
            dropout=attention_dropout,
            use_bias=True,
            kernel_initializer=tf_utils.clone_initializer(initializer),
            name='self_attention',
        )
      else:
        mixing_layer = self._init_mixing_sublayer(layer)

      if layer in moe_layers:
        feedforward_layer = layers.MoeLayer(
            experts=layers.FeedForwardExperts(
                num_experts=num_experts,
                d_ff=inner_dim,
                output_dropout=output_dropout,
                activation=inner_activation,
                kernel_initializer=tf_utils.clone_initializer(initializer),
                name='experts'),
            router=layers.ExpertsChooseMaskedRouter(
                num_experts=num_experts,
                kernel_initializer=tf_utils.clone_initializer(initializer),
                export_metrics=export_metrics,
                name='router'),
            train_capacity_factor=train_capacity_factor,
            eval_capacity_factor=eval_capacity_factor,
            examples_per_group=examples_per_group,
            name='moe')
      else:
        feedforward_layer = None  # Fallback to default (dense) MLP class

      block = layers.TransformerScaffold(
          num_attention_heads=num_attention_heads,
          inner_dim=inner_dim,
          inner_activation=inner_activation,
          attention_cls=mixing_layer,
          feedforward_cls=feedforward_layer,
          output_dropout=output_dropout,
          attention_dropout=attention_dropout,
          norm_first=norm_first,
          output_range=output_range if layer == num_layers - 1 else None,
          kernel_initializer=tf_utils.clone_initializer(initializer),
          name='transformer/layer_%d' % layer)
      self._transformer_layers.append(block)

    self._attention_mask_layer = layers.SelfAttentionMask(
        name='self_attention_mask')

    self._pooler_layer = tf_keras.layers.Dense(
        units=hidden_size,
        activation='tanh',
        kernel_initializer=tf_utils.clone_initializer(initializer),
        name='pooler_transform')

    if with_dense_inputs:
      self.inputs = dict(
          # The total length of token ids and dense inputs still has to be
          # max_sequence_length. It is checked in call().
          input_word_ids=tf_keras.Input(shape=(None,), dtype=tf.int32),
          input_mask=tf_keras.Input(shape=(None,), dtype=tf.int32),
          input_type_ids=tf_keras.Input(shape=(None,), dtype=tf.int32),
          dense_inputs=tf_keras.Input(
              shape=(None, embedding_width), dtype=tf.float32),
          dense_mask=tf_keras.Input(shape=(None,), dtype=tf.int32),
          dense_type_ids=tf_keras.Input(shape=(None,), dtype=tf.int32),
      )
    else:
      self.inputs = dict(
          input_word_ids=tf_keras.Input(
              shape=(max_sequence_length,), dtype=tf.int32),
          input_mask=tf_keras.Input(
              shape=(max_sequence_length,), dtype=tf.int32),
          input_type_ids=tf_keras.Input(
              shape=(max_sequence_length,), dtype=tf.int32))
    self._max_sequence_length = max_sequence_length

  def call(self, inputs):
    word_embeddings = None
    if isinstance(inputs, dict):
      word_ids = inputs.get('input_word_ids')
      mask = inputs.get('input_mask')
      type_ids = inputs.get('input_type_ids')
      word_embeddings = inputs.get('input_word_embeddings', None)

      dense_inputs = inputs.get('dense_inputs', None)
      dense_mask = inputs.get('dense_mask', None)
      dense_type_ids = inputs.get('dense_type_ids', None)
    else:
      raise ValueError('Unexpected inputs type (%s) to %s.' %
                       (type(inputs), self.__class__))

    if word_embeddings is None:
      word_embeddings = self._embedding_layer(word_ids)

    if dense_inputs is not None:
      # Concat the dense embeddings at sequence end.
      word_embeddings = tf.concat([word_embeddings, dense_inputs], axis=1)
      type_ids = tf.concat([type_ids, dense_type_ids], axis=1)
      mask = tf.concat([mask, dense_mask], axis=1)

    # SparseMixer: Sequence length must be the same as `max_sequence_length`.
    word_embeddings = tf.ensure_shape(word_embeddings,
                                      [None, self._max_sequence_length, None])

    # Absolute position embeddings.
    position_embeddings = self._position_embedding_layer(word_embeddings)
    type_embeddings = self._type_embedding_layer(type_ids)

    embeddings = word_embeddings + position_embeddings + type_embeddings
    embeddings = self._embedding_norm_layer(embeddings)
    embeddings = self._embedding_dropout(embeddings)

    if self._embedding_projection is not None:
      embeddings = self._embedding_projection(embeddings)

    attention_mask = self._attention_mask_layer(embeddings, mask)

    encoder_outputs = []
    x = embeddings
    for layer in self._transformer_layers:
      x = layer([x, attention_mask])
      encoder_outputs.append(x)

    last_encoder_output = encoder_outputs[-1]
    first_token_tensor = last_encoder_output[:, 0, :]
    pooled_output = self._pooler_layer(first_token_tensor)

    output = dict(
        sequence_output=encoder_outputs[-1],
        pooled_output=pooled_output,
        encoder_outputs=encoder_outputs)
    return output

  def get_embedding_table(self):
    return self._embedding_layer.embeddings

  def get_embedding_layer(self):
    return self._embedding_layer

  def get_config(self):
    return dict(self._config)

  @property
  def transformer_layers(self):
    """List of Transformer layers in the encoder."""
    return self._transformer_layers

  @property
  def pooler_layer(self):
    """The pooler dense layer after the transformer layers."""
    return self._pooler_layer

  @classmethod
  def from_config(cls, config, custom_objects=None):
    if 'embedding_layer' in config and config['embedding_layer'] is not None:
      warn_string = (
          'You are reloading a model that was saved with a '
          'potentially-shared embedding layer object. If you contine to '
          'train this model, the embedding layer will no longer be shared. '
          'To work around this, load the model outside of the Keras API.')
      print('WARNING: ' + warn_string)
      logging.warn(warn_string)

    return cls(**config)

  def _init_mixing_sublayer(self, layer: int):
    """Initializes config-dependent mixing sublayer."""
    if self._config['mixing_mechanism'] == layers.MixingMechanism.FOURIER:
      mixing_sublayer = layers.FourierTransformLayer(
          use_fft=self._config['use_fft'], name='fourier_transform')
    elif self._config['mixing_mechanism'] == layers.MixingMechanism.HARTLEY:
      mixing_sublayer = layers.HartleyTransformLayer(
          use_fft=self._config['use_fft'], name='hartley_transform')
    elif self._config['mixing_mechanism'] == layers.MixingMechanism.LINEAR:
      mixing_sublayer = layers.LinearTransformLayer(
          kernel_initializer=tf_utils.clone_initializer(
              self._config['initializer']),
          name='linear_transform')
    else:
      raise ValueError('Unsupported mixing mechanism: %s' %
                       self._config['mixing_mechanism'])

    return mixing_sublayer