Spaces:
Runtime error
Runtime error
File size: 19,250 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Sampling module for top_k, top_p and greedy decoding."""
import abc
from typing import Any, Callable, Dict, Optional
import numpy as np
import tensorflow as tf, tf_keras
from official.nlp.modeling.ops import decoding_module
def greedy(log_probs):
"""Returns the top ids and scores based on greedy decoding."""
log_probs, ids = tf.math.top_k(log_probs, k=1)
return log_probs, ids
def sample_logits_with_temperature(logits, temperature):
"""Applies a sampling temperature.
Temperature skews the distribution towards high probability
tokens and lowers the mass in tail distribution.
Args:
logits: Input logits for next token.
temperature: Tensor for specifying the sampling temperature.
Returns:
Logits with applied temperature.
"""
return logits / temperature
def sample_top_k(logits, top_k):
"""Chooses top_k logits and sets the others to negative infinity.
Args:
logits: Input logits for next token.
top_k: Tensor to specify the top_k values.
Returns:
Logits with top_k filtering applied.
"""
top_k = tf.clip_by_value(
top_k, clip_value_min=1, clip_value_max=tf.shape(logits)[-1])
top_k_logits = tf.math.top_k(logits, k=top_k)
indices_to_remove = logits < tf.expand_dims(top_k_logits[0][..., -1], -1)
top_k_logits = set_tensor_by_indices_to_value(logits, indices_to_remove,
np.NINF)
return top_k_logits
def sample_top_p(logits, top_p):
"""Chooses most probable logits with cumulative probabilities upto top_p.
Sets the remaining logits to negative infinity.
Args:
logits: Input logits for next token.
top_p: Float tensor with a value >=0 and < 1.0
Returns:
Logits with top_p filtering applied.
"""
sorted_indices = tf.argsort(logits, direction="DESCENDING")
# Flatten logits as tf.gather on TPU needs axis to be compile time constant.
logits_shape = decoding_module.shape_list(logits)
range_for_gather = tf.expand_dims(tf.range(0, logits_shape[0]), axis=1)
range_for_gather = tf.tile(range_for_gather * logits_shape[1],
[1, logits_shape[1]]) + sorted_indices
flattened_logits = tf.reshape(logits, [-1])
flattened_sorted_indices = tf.reshape(range_for_gather, [-1])
sorted_logits = tf.reshape(
tf.gather(flattened_logits, flattened_sorted_indices),
[logits_shape[0], logits_shape[1]])
cumulative_probs = tf.cumsum(tf.nn.softmax(sorted_logits, axis=-1), axis=-1)
# Remove tokens with cumulative probability above the threshold.
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep the first token above threshold.
sorted_indices_to_remove = tf.roll(sorted_indices_to_remove, 1, axis=-1)
sorted_indices_to_remove = tf.concat([
tf.zeros_like(sorted_indices_to_remove[:, :1]),
sorted_indices_to_remove[:, 1:]
], -1)
# Scatter sorted indices to original indexes.
indices_to_remove = scatter_values_on_batch_indices(sorted_indices_to_remove,
sorted_indices)
top_p_logits = set_tensor_by_indices_to_value(logits, indices_to_remove,
np.NINF)
return top_p_logits
def scatter_values_on_batch_indices(values, batch_indices):
"""Scatter `values` into a tensor using `batch_indices`.
Args:
values: tensor of shape [batch_size, vocab_size] containing the values to
scatter
batch_indices: tensor of shape [batch_size, vocab_size] containing the
indices to insert (should be a permutation in range(0, n))
Returns:
Tensor of shape [batch_size, vocab_size] with values inserted at
batch_indices
"""
tensor_shape = decoding_module.shape_list(batch_indices)
broad_casted_batch_dims = tf.reshape(
tf.broadcast_to(
tf.expand_dims(tf.range(tensor_shape[0]), axis=-1), tensor_shape),
[1, -1])
pair_indices = tf.transpose(
tf.concat([broad_casted_batch_dims,
tf.reshape(batch_indices, [1, -1])], 0))
return tf.scatter_nd(pair_indices, tf.reshape(values, [-1]), tensor_shape)
def set_tensor_by_indices_to_value(input_tensor, indices, value):
"""Where indices is True, set the value in input_tensor to value.
Args:
input_tensor: float (batch_size, dim)
indices: bool (batch_size, dim)
value: float scalar
Returns:
output_tensor: same shape as input_tensor.
"""
value_tensor = tf.zeros_like(input_tensor) + value
output_tensor = tf.where(indices, value_tensor, input_tensor)
return output_tensor
class SamplingModule(decoding_module.DecodingModule, metaclass=abc.ABCMeta):
"""Implementation for sampling strategies (go/decoding-tf-nlp)."""
def __init__(self,
symbols_to_logits_fn,
vocab_size: int,
max_decode_length: int,
eos_id: int,
padded_decode: bool,
length_normalization_fn: Optional[Callable[[int, tf.DType],
float]] = None,
top_k=0,
top_p=1.0,
sample_temperature=0.0,
enable_greedy: bool = True,
dtype: tf.DType = tf.float32,
decoding_name: Optional[str] = None,
extra_cache_output: bool = False):
"""Initialize sampling module."""
self.symbols_to_logits_fn = symbols_to_logits_fn
self.length_normalization_fn = length_normalization_fn
self.eos_id = eos_id
self.padded_decode = padded_decode
self.dtype = tf.as_dtype(dtype)
self.vocab_size = tf.convert_to_tensor(vocab_size, dtype=tf.int32)
self.max_decode_length = max_decode_length
self.top_k = tf.convert_to_tensor(top_k, dtype=tf.int32)
self.top_p = tf.convert_to_tensor(top_p, dtype=tf.float32)
self.sample_temperature = tf.convert_to_tensor(
sample_temperature, dtype=tf.float32)
self.enable_greedy = enable_greedy
self.decoding_name = decoding_name
self.extra_cache_output = extra_cache_output
super(SamplingModule, self).__init__(
length_normalization_fn=length_normalization_fn,
dtype=dtype,
decoding_name=decoding_name,
extra_cache_output=extra_cache_output)
def _grow_alive_seq(self,
state: Dict[str, Any],
batch_size: int) -> decoding_module.InternalState:
"""Grow alive sequences by one token.
This function will implement the decoding strategies like top_p, top_k
and greedy for the choosing the next logit.
Args:
state: A dictionary with the current loop state.
batch_size: The given batch size
Returns:
Tuple of
(Top sequences [batch, curr_index + 1] or [batch, max_decode_length + 1],
Scores of returned sequences [batch, 1],
New ids [batch, 1],
New alive cache)
"""
i = state[decoding_module.StateKeys.CUR_INDEX]
alive_seq = state[decoding_module.StateKeys.ALIVE_SEQ]
alive_log_probs = state[decoding_module.StateKeys.ALIVE_LOG_PROBS]
alive_cache = state[decoding_module.StateKeys.ALIVE_CACHE]
if self.padded_decode:
ids = tf.slice(alive_seq, [0, i], [batch_size, 1])
else:
ids = alive_seq
new_logits, new_cache = self.symbols_to_logits_fn(ids, i, alive_cache)
candidate_log_probs = decoding_module.log_prob_from_logits(
new_logits)
original_log_probs = candidate_log_probs + alive_log_probs
topk_log_probs, topk_ids = None, None
if self.enable_greedy:
topk_log_probs, topk_ids = greedy(original_log_probs)
else:
temperature_fn = sample_logits_with_temperature
sampled_logits = tf.cond(
self.sample_temperature > 0.0,
lambda: temperature_fn(new_logits, self.sample_temperature),
lambda: new_logits)
sampled_logits = tf.cond(
self.top_k > 0,
lambda: sample_top_k(sampled_logits, self.top_k),
lambda: sampled_logits)
sampled_logits = tf.cond(
self.top_p < 1,
lambda: sample_top_p(sampled_logits, self.top_p),
lambda: sampled_logits)
topk_ids = tf.random.categorical(
sampled_logits, dtype=tf.int32, num_samples=1)
topk_log_probs = tf.gather(
original_log_probs, topk_ids, axis=1, batch_dims=1)
if self.padded_decode:
topk_seq = tf.transpose(alive_seq, perm=[1, 0])
topk_seq = tf.tensor_scatter_nd_update(
topk_seq, [[i + 1]], tf.expand_dims(tf.squeeze(topk_ids, -1), 0))
topk_seq = tf.transpose(topk_seq, perm=[1, 0])
else:
topk_seq = tf.concat([alive_seq, topk_ids], axis=-1)
return topk_seq, topk_log_probs, topk_ids, new_cache
def _create_initial_state(
self,
initial_ids: tf.Tensor,
initial_cache: Dict[str, tf.Tensor],
batch_size: int,
initial_log_probs: Optional[tf.Tensor] = None
) -> decoding_module.InitialState:
"""Return initial state dictionary and its shape invariants."""
for key, value in initial_cache.items():
for inner_value in tf.nest.flatten(value):
if inner_value.dtype != self.dtype:
raise TypeError(
"initial_cache element for key '%s' has dtype %s that does not "
"match sampling_module's dtype of %s. Value: %s" %
(key, value.dtype.name, self.dtype.name, inner_value))
# Current loop index (starts at 0)
cur_index = tf.constant(0)
# Alive sequence with shape [batch_size, 1]
alive_seq = initial_ids
alive_seq = tf.expand_dims(alive_seq, axis=-1)
if self.padded_decode:
alive_seq = tf.tile(alive_seq, [1, self.max_decode_length + 1])
# Initial log probabilities with shape [batch_size, 1].
if initial_log_probs is None:
initial_log_probs = tf.constant([[0.]], dtype=self.dtype)
alive_log_probs = tf.tile(initial_log_probs, [batch_size, 1])
else:
alive_log_probs = initial_log_probs
alive_cache = initial_cache
# Initialize tensor storing finished sequences [batch_size, 1, 1].
finished_seq = tf.zeros(tf.shape(alive_seq), tf.int32)
# Set scores of the initial finished seqs to negative infinity.
finished_scores = tf.zeros([batch_size, 1], dtype=self.dtype)
# Initialize finished flags with all False values.
finished_flags = tf.zeros([batch_size, 1], tf.bool)
# Create state dictionary and state shapes.
state = {
decoding_module.StateKeys.CUR_INDEX: cur_index,
decoding_module.StateKeys.ALIVE_SEQ: alive_seq,
decoding_module.StateKeys.ALIVE_LOG_PROBS: alive_log_probs,
decoding_module.StateKeys.ALIVE_CACHE: alive_cache,
decoding_module.StateKeys.FINISHED_SEQ: finished_seq,
decoding_module.StateKeys.FINISHED_SCORES: finished_scores,
decoding_module.StateKeys.FINISHED_FLAGS: finished_flags
}
if self.padded_decode:
state_shape_invariants = {
decoding_module.StateKeys.CUR_INDEX:
tf.TensorShape([]),
decoding_module.StateKeys.ALIVE_SEQ:
tf.TensorShape([batch_size, self.max_decode_length + 1]),
decoding_module.StateKeys.ALIVE_LOG_PROBS:
tf.TensorShape([batch_size, 1]),
decoding_module.StateKeys.ALIVE_CACHE:
tf.nest.map_structure(lambda state: state.get_shape(),
alive_cache),
decoding_module.StateKeys.FINISHED_SEQ:
tf.TensorShape([batch_size, self.max_decode_length + 1]),
decoding_module.StateKeys.FINISHED_SCORES:
tf.TensorShape([batch_size, 1]),
decoding_module.StateKeys.FINISHED_FLAGS:
tf.TensorShape([batch_size, 1])
}
else:
state_shape_invariants = {
decoding_module.StateKeys.CUR_INDEX:
tf.TensorShape([]),
decoding_module.StateKeys.ALIVE_SEQ:
tf.TensorShape([None, None]),
decoding_module.StateKeys.ALIVE_LOG_PROBS:
tf.TensorShape([None, 1]),
decoding_module.StateKeys.ALIVE_CACHE:
tf.nest.map_structure(decoding_module.get_shape_keep_last_dim,
alive_cache),
decoding_module.StateKeys.FINISHED_SEQ:
tf.TensorShape([None, None]),
decoding_module.StateKeys.FINISHED_SCORES:
tf.TensorShape([None, 1]),
decoding_module.StateKeys.FINISHED_FLAGS:
tf.TensorShape([None, 1])
}
if self.extra_cache_output:
state.update(
{decoding_module.StateKeys.INITIAL_OUTPUT_CACHE: alive_cache})
if self.padded_decode:
state_shape_invariants.update({
decoding_module.StateKeys.INITIAL_OUTPUT_CACHE:
tf.nest.map_structure(lambda state: state.get_shape(),
alive_cache)
})
else:
state_shape_invariants.update({
decoding_module.StateKeys.INITIAL_OUTPUT_CACHE:
tf.nest.map_structure(decoding_module.get_shape_keep_last_dim,
alive_cache),
})
return state, state_shape_invariants
def _get_new_alive_state(self, new_seq: tf.Tensor, new_log_probs: tf.Tensor,
new_finished_flags: tf.Tensor,
new_cache: Dict[str, tf.Tensor]) -> Dict[str, Any]:
"""Gather the sequences that are still alive.
This function resets the sequences in the alive_state that are finished.
Args:
new_seq: New sequences generated by growing the current alive sequences
int32 tensor with shape [batch_size, cur_index + 1]
new_log_probs: Log probabilities of new sequences float32 tensor with
shape [batch_size, 1]
new_finished_flags: A boolean Tensor indicates which sequences are live
inside the beam.
new_cache: Dict of cached values for each sequence.
Returns:
Dictionary with alive keys.
"""
new_seq = tf.multiply(
new_seq, tf.cast(tf.logical_not(new_finished_flags), new_seq.dtype))
return {
decoding_module.StateKeys.ALIVE_SEQ: new_seq,
decoding_module.StateKeys.ALIVE_LOG_PROBS: new_log_probs,
decoding_module.StateKeys.ALIVE_CACHE: new_cache
}
def _get_new_finished_state(self, state: Dict[str, Any], new_seq: tf.Tensor,
new_log_probs: tf.Tensor,
new_finished_flags: tf.Tensor,
batch_size: int) -> Dict[str, tf.Tensor]:
"""Combine new and old finished sequences.
Args:
state: A dictionary with the current loop state.
new_seq: New sequences generated by growing the current alive sequences
int32 tensor [batch, curr_index + 1] or [batch, max_decode_length + 1].
new_log_probs: Log probabilities of new sequences float32 tensor with
shape [batch, 1].
new_finished_flags: A boolean Tensor indicates which sequences are live.
batch_size: The given batch size.
Returns:
Dictionary with finished keys from StateKeys.
"""
i = state[decoding_module.StateKeys.CUR_INDEX]
finished_seq = state[decoding_module.StateKeys.FINISHED_SEQ]
finished_scores = state[decoding_module.StateKeys.FINISHED_SCORES]
finished_flags = state[decoding_module.StateKeys.FINISHED_FLAGS]
if not self.padded_decode:
finished_seq = tf.concat(
[finished_seq, tf.zeros([batch_size, 1], tf.int32)], axis=-1)
new_scores = new_log_probs
if self.length_normalization_fn is not None:
length_norm = self.length_normalization_fn(i + 1, self.dtype)
new_scores = new_log_probs / length_norm
new_seq = tf.multiply(
new_seq, tf.cast(tf.logical_not(finished_flags), new_seq.dtype))
new_scores = tf.multiply(
new_scores, tf.cast(tf.logical_not(finished_flags), new_scores.dtype))
finished_seq += tf.multiply(new_seq,
tf.cast(new_finished_flags, new_seq.dtype))
finished_scores += tf.multiply(
new_scores, tf.cast(new_finished_flags, new_scores.dtype))
new_finished_flags = tf.logical_or(new_finished_flags, finished_flags)
return {
decoding_module.StateKeys.FINISHED_SEQ: finished_seq,
decoding_module.StateKeys.FINISHED_SCORES: finished_scores,
decoding_module.StateKeys.FINISHED_FLAGS: new_finished_flags
}
def _process_finished_state(
self, finished_state: Dict[str, Any]) -> decoding_module.Output:
"""Process the alive/finished state to return final sequences and scores."""
alive_seq = finished_state[decoding_module.StateKeys.ALIVE_SEQ]
alive_log_probs = finished_state[decoding_module.StateKeys.ALIVE_LOG_PROBS]
finished_seq = finished_state[decoding_module.StateKeys.FINISHED_SEQ]
finished_scores = finished_state[decoding_module.StateKeys.FINISHED_SCORES]
finished_flags = finished_state[decoding_module.StateKeys.FINISHED_FLAGS]
finished_cond = tf.reduce_any(finished_flags, 1, name="finished_cond")
if self.length_normalization_fn is not None:
length_norm = self.length_normalization_fn(self.max_decode_length + 1,
self.dtype)
alive_log_probs = alive_log_probs / length_norm
seq_cond = decoding_module.expand_to_same_rank(finished_cond, finished_seq)
score_cond = decoding_module.expand_to_same_rank(finished_cond,
finished_scores)
finished_seq = tf.where(seq_cond, finished_seq, alive_seq)
finished_scores = tf.where(score_cond, finished_scores, alive_log_probs)
if self.extra_cache_output:
return finished_seq, finished_scores, finished_state[
decoding_module.StateKeys.INITIAL_OUTPUT_CACHE]
return finished_seq, finished_scores
def _continue_search(self, state) -> tf.Tensor:
i = state[decoding_module.StateKeys.CUR_INDEX]
# Have we reached max decoding length?
not_at_end = tf.less(i, self.max_decode_length)
# Have all sampled sequences reached an EOS?
all_has_eos = tf.reduce_all(
state[decoding_module.StateKeys.FINISHED_FLAGS],
axis=None,
name="search_finish_cond")
return tf.logical_and(not_at_end, tf.logical_not(all_has_eos))
def _finished_flags(self, topk_ids, state) -> tf.Tensor:
new_finished_flags = tf.equal(topk_ids, self.eos_id)
new_finished_flags = tf.logical_or(
new_finished_flags, state[decoding_module.StateKeys.FINISHED_FLAGS])
return new_finished_flags
|