File size: 8,625 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Evaluation script for SQuAD version 2.0.

The functions are copied and modified from
https://raw.githubusercontent.com/white127/SQUAD-2.0-bidaf/master/evaluate-v2.0.py

In addition to basic functionality, we also compute additional statistics and
plot precision-recall curves if an additional na_prob.json file is provided.
This file is expected to map question ID's to the model's predicted probability
that a question is unanswerable.
"""

import collections
import re
import string

from absl import logging


def _make_qid_to_has_ans(dataset):
  qid_to_has_ans = {}
  for article in dataset:
    for p in article['paragraphs']:
      for qa in p['qas']:
        qid_to_has_ans[qa['id']] = bool(qa['answers'])
  return qid_to_has_ans


def _normalize_answer(s):
  """Lower text and remove punctuation, articles and extra whitespace."""
  def remove_articles(text):
    regex = re.compile(r'\b(a|an|the)\b', re.UNICODE)
    return re.sub(regex, ' ', text)
  def white_space_fix(text):
    return ' '.join(text.split())
  def remove_punc(text):
    exclude = set(string.punctuation)
    return ''.join(ch for ch in text if ch not in exclude)
  def lower(text):
    return text.lower()
  return white_space_fix(remove_articles(remove_punc(lower(s))))


def _get_tokens(s):
  if not s: return []
  return _normalize_answer(s).split()


def _compute_exact(a_gold, a_pred):
  return int(_normalize_answer(a_gold) == _normalize_answer(a_pred))


def _compute_f1(a_gold, a_pred):
  """Compute F1-score."""
  gold_toks = _get_tokens(a_gold)
  pred_toks = _get_tokens(a_pred)
  common = collections.Counter(gold_toks) & collections.Counter(pred_toks)
  num_same = sum(common.values())
  if not gold_toks or not pred_toks:
    # If either is no-answer, then F1 is 1 if they agree, 0 otherwise
    return int(gold_toks == pred_toks)
  if num_same == 0:
    return 0
  precision = 1.0 * num_same / len(pred_toks)
  recall = 1.0 * num_same / len(gold_toks)
  f1 = (2 * precision * recall) / (precision + recall)
  return f1


def _get_raw_scores(dataset, predictions):
  """Compute raw scores."""
  exact_scores = {}
  f1_scores = {}
  for article in dataset:
    for p in article['paragraphs']:
      for qa in p['qas']:
        qid = qa['id']
        gold_answers = [a['text'] for a in qa['answers']
                        if _normalize_answer(a['text'])]
        if not gold_answers:
          # For unanswerable questions, only correct answer is empty string
          gold_answers = ['']
        if qid not in predictions:
          logging.error('Missing prediction for %s', qid)
          continue
        a_pred = predictions[qid]
        # Take max over all gold answers
        exact_scores[qid] = max(_compute_exact(a, a_pred) for a in gold_answers)
        f1_scores[qid] = max(_compute_f1(a, a_pred) for a in gold_answers)
  return exact_scores, f1_scores


def _apply_no_ans_threshold(
    scores, na_probs, qid_to_has_ans, na_prob_thresh=1.0):
  new_scores = {}
  for qid, s in scores.items():
    pred_na = na_probs[qid] > na_prob_thresh
    if pred_na:
      new_scores[qid] = float(not qid_to_has_ans[qid])
    else:
      new_scores[qid] = s
  return new_scores


def _make_eval_dict(exact_scores, f1_scores, qid_list=None):
  """Make evaluation result dictionary."""
  if not qid_list:
    total = len(exact_scores)
    return collections.OrderedDict([
        ('exact', 100.0 * sum(exact_scores.values()) / total),
        ('f1', 100.0 * sum(f1_scores.values()) / total),
        ('total', total),
    ])
  else:
    total = len(qid_list)
    return collections.OrderedDict([
        ('exact', 100.0 * sum(exact_scores[k] for k in qid_list) / total),
        ('f1', 100.0 * sum(f1_scores[k] for k in qid_list) / total),
        ('total', total),
    ])


def _merge_eval(main_eval, new_eval, prefix):
  for k in new_eval:
    main_eval['%s_%s' % (prefix, k)] = new_eval[k]


def _make_precision_recall_eval(scores, na_probs, num_true_pos, qid_to_has_ans):
  """Make evaluation dictionary containing average recision recall."""
  qid_list = sorted(na_probs, key=lambda k: na_probs[k])
  true_pos = 0.0
  cur_p = 1.0
  cur_r = 0.0
  precisions = [1.0]
  recalls = [0.0]
  avg_prec = 0.0
  for i, qid in enumerate(qid_list):
    if qid_to_has_ans[qid]:
      true_pos += scores[qid]
    cur_p = true_pos / float(i+1)
    cur_r = true_pos / float(num_true_pos)
    if i == len(qid_list) - 1 or na_probs[qid] != na_probs[qid_list[i+1]]:
      # i.e., if we can put a threshold after this point
      avg_prec += cur_p * (cur_r - recalls[-1])
      precisions.append(cur_p)
      recalls.append(cur_r)
  return {'ap': 100.0 * avg_prec}


def _run_precision_recall_analysis(
    main_eval, exact_raw, f1_raw, na_probs, qid_to_has_ans):
  """Run precision recall analysis and return result dictionary."""
  num_true_pos = sum(1 for v in qid_to_has_ans.values() if v)
  if num_true_pos == 0:
    return
  pr_exact = _make_precision_recall_eval(
      exact_raw, na_probs, num_true_pos, qid_to_has_ans)
  pr_f1 = _make_precision_recall_eval(
      f1_raw, na_probs, num_true_pos, qid_to_has_ans)
  oracle_scores = {k: float(v) for k, v in qid_to_has_ans.items()}
  pr_oracle = _make_precision_recall_eval(
      oracle_scores, na_probs, num_true_pos, qid_to_has_ans)
  _merge_eval(main_eval, pr_exact, 'pr_exact')
  _merge_eval(main_eval, pr_f1, 'pr_f1')
  _merge_eval(main_eval, pr_oracle, 'pr_oracle')


def _find_best_thresh(predictions, scores, na_probs, qid_to_has_ans):
  """Find the best threshold for no answer probability."""
  num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k])
  cur_score = num_no_ans
  best_score = cur_score
  best_thresh = 0.0
  qid_list = sorted(na_probs, key=lambda k: na_probs[k])
  for qid in qid_list:
    if qid not in scores: continue
    if qid_to_has_ans[qid]:
      diff = scores[qid]
    else:
      if predictions[qid]:
        diff = -1
      else:
        diff = 0
    cur_score += diff
    if cur_score > best_score:
      best_score = cur_score
      best_thresh = na_probs[qid]
  return 100.0 * best_score / len(scores), best_thresh


def _find_all_best_thresh(
    main_eval, predictions, exact_raw, f1_raw, na_probs, qid_to_has_ans):
  best_exact, exact_thresh = _find_best_thresh(
      predictions, exact_raw, na_probs, qid_to_has_ans)
  best_f1, f1_thresh = _find_best_thresh(
      predictions, f1_raw, na_probs, qid_to_has_ans)
  main_eval['final_exact'] = best_exact
  main_eval['final_exact_thresh'] = exact_thresh
  main_eval['final_f1'] = best_f1
  main_eval['final_f1_thresh'] = f1_thresh


def evaluate(dataset, predictions, na_probs=None):
  """Evaluate prediction results."""
  new_orig_data = []
  for article in dataset:
    for p in article['paragraphs']:
      for qa in p['qas']:
        if qa['id'] in predictions:
          new_para = {'qas': [qa]}
          new_article = {'paragraphs': [new_para]}
          new_orig_data.append(new_article)
  dataset = new_orig_data

  if na_probs is None:
    na_probs = {k: 0.0 for k in predictions}
  qid_to_has_ans = _make_qid_to_has_ans(dataset)  # maps qid to True/False
  has_ans_qids = [k for k, v in qid_to_has_ans.items() if v]
  no_ans_qids = [k for k, v in qid_to_has_ans.items() if not v]
  exact_raw, f1_raw = _get_raw_scores(dataset, predictions)
  exact_thresh = _apply_no_ans_threshold(exact_raw, na_probs, qid_to_has_ans)
  f1_thresh = _apply_no_ans_threshold(f1_raw, na_probs, qid_to_has_ans)
  out_eval = _make_eval_dict(exact_thresh, f1_thresh)
  if has_ans_qids:
    has_ans_eval = _make_eval_dict(
        exact_thresh, f1_thresh, qid_list=has_ans_qids)
    _merge_eval(out_eval, has_ans_eval, 'HasAns')
  if no_ans_qids:
    no_ans_eval = _make_eval_dict(exact_thresh, f1_thresh, qid_list=no_ans_qids)
    _merge_eval(out_eval, no_ans_eval, 'NoAns')

  _find_all_best_thresh(
      out_eval, predictions, exact_raw, f1_raw, na_probs, qid_to_has_ans)
  _run_precision_recall_analysis(
      out_eval, exact_raw, f1_raw, na_probs, qid_to_has_ans)
  return out_eval