Spaces:
Runtime error
Runtime error
File size: 9,744 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Download and extract the MovieLens dataset from GroupLens website.
Download the dataset, and perform basic preprocessing.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import tempfile
import zipfile
# pylint: disable=g-bad-import-order
# Import libraries
import numpy as np
import pandas as pd
import six
from six.moves import urllib # pylint: disable=redefined-builtin
from absl import app
from absl import flags
from absl import logging
import tensorflow as tf, tf_keras
# pylint: enable=g-bad-import-order
from official.utils.flags import core as flags_core
ML_1M = "ml-1m"
ML_20M = "ml-20m"
DATASETS = [ML_1M, ML_20M]
RATINGS_FILE = "ratings.csv"
MOVIES_FILE = "movies.csv"
# URL to download dataset
_DATA_URL = "https://files.grouplens.org/datasets/movielens/"
GENRE_COLUMN = "genres"
ITEM_COLUMN = "item_id" # movies
RATING_COLUMN = "rating"
TIMESTAMP_COLUMN = "timestamp"
TITLE_COLUMN = "titles"
USER_COLUMN = "user_id"
GENRES = [
'Action', 'Adventure', 'Animation', "Children", 'Comedy', 'Crime',
'Documentary', 'Drama', 'Fantasy', 'Film-Noir', 'Horror', "IMAX", 'Musical',
'Mystery', 'Romance', 'Sci-Fi', 'Thriller', 'War', 'Western'
]
N_GENRE = len(GENRES)
RATING_COLUMNS = [USER_COLUMN, ITEM_COLUMN, RATING_COLUMN, TIMESTAMP_COLUMN]
MOVIE_COLUMNS = [ITEM_COLUMN, TITLE_COLUMN, GENRE_COLUMN]
# Note: Users are indexed [1, k], not [0, k-1]
NUM_USER_IDS = {
ML_1M: 6040,
ML_20M: 138493,
}
# Note: Movies are indexed [1, k], not [0, k-1]
# Both the 1m and 20m datasets use the same movie set.
NUM_ITEM_IDS = 3952
MAX_RATING = 5
NUM_RATINGS = {
ML_1M: 1000209,
ML_20M: 20000263
}
DATASET_TO_NUM_USERS_AND_ITEMS = {ML_1M: (6040, 3706), ML_20M: (138493, 26744)}
def _download_and_clean(dataset, data_dir):
"""Download MovieLens dataset in a standard format.
This function downloads the specified MovieLens format and coerces it into a
standard format. The only difference between the ml-1m and ml-20m datasets
after this point (other than size, of course) is that the 1m dataset uses
whole number ratings while the 20m dataset allows half integer ratings.
"""
if dataset not in DATASETS:
raise ValueError("dataset {} is not in {{{}}}".format(
dataset, ",".join(DATASETS)))
data_subdir = os.path.join(data_dir, dataset)
expected_files = ["{}.zip".format(dataset), RATINGS_FILE, MOVIES_FILE]
tf.io.gfile.makedirs(data_subdir)
if set(expected_files).intersection(
tf.io.gfile.listdir(data_subdir)) == set(expected_files):
logging.info("Dataset {} has already been downloaded".format(dataset))
return
url = "{}{}.zip".format(_DATA_URL, dataset)
temp_dir = tempfile.mkdtemp()
try:
zip_path = os.path.join(temp_dir, "{}.zip".format(dataset))
zip_path, _ = urllib.request.urlretrieve(url, zip_path)
statinfo = os.stat(zip_path)
# A new line to clear the carriage return from download progress
# logging.info is not applicable here
print()
logging.info(
"Successfully downloaded {} {} bytes".format(
zip_path, statinfo.st_size))
zipfile.ZipFile(zip_path, "r").extractall(temp_dir)
if dataset == ML_1M:
_regularize_1m_dataset(temp_dir)
else:
_regularize_20m_dataset(temp_dir)
for fname in tf.io.gfile.listdir(temp_dir):
if not tf.io.gfile.exists(os.path.join(data_subdir, fname)):
tf.io.gfile.copy(os.path.join(temp_dir, fname),
os.path.join(data_subdir, fname))
else:
logging.info("Skipping copy of {}, as it already exists in the "
"destination folder.".format(fname))
finally:
tf.io.gfile.rmtree(temp_dir)
def _transform_csv(input_path, output_path, names, skip_first, separator=","):
"""Transform csv to a regularized format.
Args:
input_path: The path of the raw csv.
output_path: The path of the cleaned csv.
names: The csv column names.
skip_first: Boolean of whether to skip the first line of the raw csv.
separator: Character used to separate fields in the raw csv.
"""
if six.PY2:
names = [six.ensure_text(n, "utf-8") for n in names]
with tf.io.gfile.GFile(output_path, "wb") as f_out, \
tf.io.gfile.GFile(input_path, "rb") as f_in:
# Write column names to the csv.
f_out.write(",".join(names).encode("utf-8"))
f_out.write(b"\n")
for i, line in enumerate(f_in):
if i == 0 and skip_first:
continue # ignore existing labels in the csv
line = six.ensure_text(line, "utf-8", errors="ignore")
fields = line.split(separator)
if separator != ",":
fields = ['"{}"'.format(field) if "," in field else field
for field in fields]
f_out.write(",".join(fields).encode("utf-8"))
def _regularize_1m_dataset(temp_dir):
"""
ratings.dat
The file has no header row, and each line is in the following format:
UserID::MovieID::Rating::Timestamp
- UserIDs range from 1 and 6040
- MovieIDs range from 1 and 3952
- Ratings are made on a 5-star scale (whole-star ratings only)
- Timestamp is represented in seconds since midnight Coordinated Universal
Time (UTC) of January 1, 1970.
- Each user has at least 20 ratings
movies.dat
Each line has the following format:
MovieID::Title::Genres
- MovieIDs range from 1 and 3952
"""
working_dir = os.path.join(temp_dir, ML_1M)
_transform_csv(
input_path=os.path.join(working_dir, "ratings.dat"),
output_path=os.path.join(temp_dir, RATINGS_FILE),
names=RATING_COLUMNS, skip_first=False, separator="::")
_transform_csv(
input_path=os.path.join(working_dir, "movies.dat"),
output_path=os.path.join(temp_dir, MOVIES_FILE),
names=MOVIE_COLUMNS, skip_first=False, separator="::")
tf.io.gfile.rmtree(working_dir)
def _regularize_20m_dataset(temp_dir):
"""
ratings.csv
Each line of this file after the header row represents one rating of one
movie by one user, and has the following format:
userId,movieId,rating,timestamp
- The lines within this file are ordered first by userId, then, within user,
by movieId.
- Ratings are made on a 5-star scale, with half-star increments
(0.5 stars - 5.0 stars).
- Timestamps represent seconds since midnight Coordinated Universal Time
(UTC) of January 1, 1970.
- All the users had rated at least 20 movies.
movies.csv
Each line has the following format:
MovieID,Title,Genres
- MovieIDs range from 1 and 3952
"""
working_dir = os.path.join(temp_dir, ML_20M)
_transform_csv(
input_path=os.path.join(working_dir, "ratings.csv"),
output_path=os.path.join(temp_dir, RATINGS_FILE),
names=RATING_COLUMNS, skip_first=True, separator=",")
_transform_csv(
input_path=os.path.join(working_dir, "movies.csv"),
output_path=os.path.join(temp_dir, MOVIES_FILE),
names=MOVIE_COLUMNS, skip_first=True, separator=",")
tf.io.gfile.rmtree(working_dir)
def download(dataset, data_dir):
if dataset:
_download_and_clean(dataset, data_dir)
else:
_ = [_download_and_clean(d, data_dir) for d in DATASETS]
def ratings_csv_to_dataframe(data_dir, dataset):
with tf.io.gfile.GFile(os.path.join(data_dir, dataset, RATINGS_FILE)) as f:
return pd.read_csv(f, encoding="utf-8")
def csv_to_joint_dataframe(data_dir, dataset):
ratings = ratings_csv_to_dataframe(data_dir, dataset)
with tf.io.gfile.GFile(os.path.join(data_dir, dataset, MOVIES_FILE)) as f:
movies = pd.read_csv(f, encoding="utf-8")
df = ratings.merge(movies, on=ITEM_COLUMN)
df[RATING_COLUMN] = df[RATING_COLUMN].astype(np.float32)
return df
def integerize_genres(dataframe):
"""Replace genre string with a binary vector.
Args:
dataframe: a pandas dataframe of movie data.
Returns:
The transformed dataframe.
"""
def _map_fn(entry):
entry.replace("Children's", "Children") # naming difference.
movie_genres = entry.split("|")
output = np.zeros((len(GENRES),), dtype=np.int64)
for i, genre in enumerate(GENRES):
if genre in movie_genres:
output[i] = 1
return output
dataframe[GENRE_COLUMN] = dataframe[GENRE_COLUMN].apply(_map_fn)
return dataframe
def define_flags():
"""Add flags specifying data usage arguments."""
flags.DEFINE_enum(
name="dataset",
default=None,
enum_values=DATASETS,
case_sensitive=False,
help=flags_core.help_wrap("Dataset to be trained and evaluated."))
def define_data_download_flags():
"""Add flags specifying data download and usage arguments."""
flags.DEFINE_string(
name="data_dir", default="/tmp/movielens-data/",
help=flags_core.help_wrap(
"Directory to download and extract data."))
define_flags()
def main(_):
"""Download and extract the data from GroupLens website."""
download(flags.FLAGS.dataset, flags.FLAGS.data_dir)
if __name__ == "__main__":
define_data_download_flags()
FLAGS = flags.FLAGS
app.run(main)
|