File size: 6,974 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""NCF model input pipeline."""

import functools

# pylint: disable=g-bad-import-order
import tensorflow as tf, tf_keras
# pylint: enable=g-bad-import-order

from official.recommendation import constants as rconst
from official.recommendation import data_pipeline
from official.recommendation import movielens


def create_dataset_from_tf_record_files(input_file_pattern,
                                        pre_batch_size,
                                        batch_size,
                                        is_training=True,
                                        rebatch=False):
  """Creates dataset from (tf)records files for training/evaluation."""
  if pre_batch_size != batch_size:
    raise ValueError("Pre-batch ({}) size is not equal to batch "
                     "size ({})".format(pre_batch_size, batch_size))

  files = tf.data.Dataset.list_files(input_file_pattern, shuffle=is_training)

  dataset = files.interleave(
      tf.data.TFRecordDataset,
      cycle_length=16,
      num_parallel_calls=tf.data.experimental.AUTOTUNE)
  decode_fn = functools.partial(
      data_pipeline.DatasetManager.deserialize,
      batch_size=pre_batch_size,
      is_training=is_training)
  dataset = dataset.map(
      decode_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE)

  if rebatch:
    # A workaround for TPU Pod evaluation dataset.
    # TODO (b/162341937) remove once it's fixed.
    dataset = dataset.unbatch()
    dataset = dataset.batch(pre_batch_size)

  dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
  return dataset


def create_dataset_from_data_producer(producer, params):
  """Return dataset online-generating data."""

  def preprocess_train_input(features, labels):
    """Pre-process the training data.

    This is needed because
    - The label needs to be extended to be used in the loss fn
    - We need the same inputs for training and eval so adding fake inputs
      for DUPLICATE_MASK in training data.

    Args:
      features: Dictionary of features for training.
      labels: Training labels.

    Returns:
      Processed training features.
    """
    fake_dup_mask = tf.zeros_like(features[movielens.USER_COLUMN])
    features[rconst.DUPLICATE_MASK] = fake_dup_mask
    features[rconst.TRAIN_LABEL_KEY] = labels
    return features

  train_input_fn = producer.make_input_fn(is_training=True)
  train_input_dataset = train_input_fn(params).map(preprocess_train_input)

  def preprocess_eval_input(features):
    """Pre-process the eval data.

    This is needed because:
    - The label needs to be extended to be used in the loss fn
    - We need the same inputs for training and eval so adding fake inputs
      for VALID_PT_MASK in eval data.

    Args:
      features: Dictionary of features for evaluation.

    Returns:
      Processed evaluation features.
    """
    labels = tf.cast(tf.zeros_like(features[movielens.USER_COLUMN]), tf.bool)
    fake_valid_pt_mask = tf.cast(
        tf.zeros_like(features[movielens.USER_COLUMN]), tf.bool)
    features[rconst.VALID_POINT_MASK] = fake_valid_pt_mask
    features[rconst.TRAIN_LABEL_KEY] = labels
    return features

  eval_input_fn = producer.make_input_fn(is_training=False)
  eval_input_dataset = eval_input_fn(params).map(preprocess_eval_input)

  return train_input_dataset, eval_input_dataset


def create_ncf_input_data(params,
                          producer=None,
                          input_meta_data=None,
                          strategy=None):
  """Creates NCF training/evaluation dataset.

  Args:
    params: Dictionary containing parameters for train/evaluation data.
    producer: Instance of BaseDataConstructor that generates data online. Must
      not be None when params['train_dataset_path'] or
      params['eval_dataset_path'] is not specified.
    input_meta_data: A dictionary of input metadata to be used when reading data
      from tf record files. Must be specified when params["train_input_dataset"]
      is specified.
    strategy: Distribution strategy used for distributed training. If specified,
      used to assert that evaluation batch size is correctly a multiple of total
      number of devices used.

  Returns:
    (training dataset, evaluation dataset, train steps per epoch,
    eval steps per epoch)

  Raises:
    ValueError: If data is being generated online for when using TPU's.
  """
  # NCF evaluation metric calculation logic assumes that evaluation data
  # sample size are in multiples of (1 + number of negative samples in
  # evaluation) for each device. As so, evaluation batch size must be a
  # multiple of (number of replicas * (1 + number of negative samples)).
  num_devices = strategy.num_replicas_in_sync if strategy else 1
  if (params["eval_batch_size"] % (num_devices *
                                   (1 + rconst.NUM_EVAL_NEGATIVES))):
    raise ValueError("Evaluation batch size must be divisible by {} "
                     "times {}".format(num_devices,
                                       (1 + rconst.NUM_EVAL_NEGATIVES)))

  if params["train_dataset_path"]:
    assert params["eval_dataset_path"]

    train_dataset = create_dataset_from_tf_record_files(
        params["train_dataset_path"],
        input_meta_data["train_prebatch_size"],
        params["batch_size"],
        is_training=True,
        rebatch=False)

    # Re-batch evaluation dataset for TPU Pods.
    # TODO (b/162341937) remove once it's fixed.
    eval_rebatch = (params["use_tpu"] and strategy.num_replicas_in_sync > 8)
    eval_dataset = create_dataset_from_tf_record_files(
        params["eval_dataset_path"],
        input_meta_data["eval_prebatch_size"],
        params["eval_batch_size"],
        is_training=False,
        rebatch=eval_rebatch)

    num_train_steps = int(input_meta_data["num_train_steps"])
    num_eval_steps = int(input_meta_data["num_eval_steps"])
  else:
    if params["use_tpu"]:
      raise ValueError("TPU training does not support data producer yet. "
                       "Use pre-processed data.")

    assert producer
    # Start retrieving data from producer.
    train_dataset, eval_dataset = create_dataset_from_data_producer(
        producer, params)
    num_train_steps = producer.train_batches_per_epoch
    num_eval_steps = producer.eval_batches_per_epoch

  return train_dataset, eval_dataset, num_train_steps, num_eval_steps