Spaces:
Runtime error
Runtime error
File size: 6,974 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""NCF model input pipeline."""
import functools
# pylint: disable=g-bad-import-order
import tensorflow as tf, tf_keras
# pylint: enable=g-bad-import-order
from official.recommendation import constants as rconst
from official.recommendation import data_pipeline
from official.recommendation import movielens
def create_dataset_from_tf_record_files(input_file_pattern,
pre_batch_size,
batch_size,
is_training=True,
rebatch=False):
"""Creates dataset from (tf)records files for training/evaluation."""
if pre_batch_size != batch_size:
raise ValueError("Pre-batch ({}) size is not equal to batch "
"size ({})".format(pre_batch_size, batch_size))
files = tf.data.Dataset.list_files(input_file_pattern, shuffle=is_training)
dataset = files.interleave(
tf.data.TFRecordDataset,
cycle_length=16,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
decode_fn = functools.partial(
data_pipeline.DatasetManager.deserialize,
batch_size=pre_batch_size,
is_training=is_training)
dataset = dataset.map(
decode_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE)
if rebatch:
# A workaround for TPU Pod evaluation dataset.
# TODO (b/162341937) remove once it's fixed.
dataset = dataset.unbatch()
dataset = dataset.batch(pre_batch_size)
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
return dataset
def create_dataset_from_data_producer(producer, params):
"""Return dataset online-generating data."""
def preprocess_train_input(features, labels):
"""Pre-process the training data.
This is needed because
- The label needs to be extended to be used in the loss fn
- We need the same inputs for training and eval so adding fake inputs
for DUPLICATE_MASK in training data.
Args:
features: Dictionary of features for training.
labels: Training labels.
Returns:
Processed training features.
"""
fake_dup_mask = tf.zeros_like(features[movielens.USER_COLUMN])
features[rconst.DUPLICATE_MASK] = fake_dup_mask
features[rconst.TRAIN_LABEL_KEY] = labels
return features
train_input_fn = producer.make_input_fn(is_training=True)
train_input_dataset = train_input_fn(params).map(preprocess_train_input)
def preprocess_eval_input(features):
"""Pre-process the eval data.
This is needed because:
- The label needs to be extended to be used in the loss fn
- We need the same inputs for training and eval so adding fake inputs
for VALID_PT_MASK in eval data.
Args:
features: Dictionary of features for evaluation.
Returns:
Processed evaluation features.
"""
labels = tf.cast(tf.zeros_like(features[movielens.USER_COLUMN]), tf.bool)
fake_valid_pt_mask = tf.cast(
tf.zeros_like(features[movielens.USER_COLUMN]), tf.bool)
features[rconst.VALID_POINT_MASK] = fake_valid_pt_mask
features[rconst.TRAIN_LABEL_KEY] = labels
return features
eval_input_fn = producer.make_input_fn(is_training=False)
eval_input_dataset = eval_input_fn(params).map(preprocess_eval_input)
return train_input_dataset, eval_input_dataset
def create_ncf_input_data(params,
producer=None,
input_meta_data=None,
strategy=None):
"""Creates NCF training/evaluation dataset.
Args:
params: Dictionary containing parameters for train/evaluation data.
producer: Instance of BaseDataConstructor that generates data online. Must
not be None when params['train_dataset_path'] or
params['eval_dataset_path'] is not specified.
input_meta_data: A dictionary of input metadata to be used when reading data
from tf record files. Must be specified when params["train_input_dataset"]
is specified.
strategy: Distribution strategy used for distributed training. If specified,
used to assert that evaluation batch size is correctly a multiple of total
number of devices used.
Returns:
(training dataset, evaluation dataset, train steps per epoch,
eval steps per epoch)
Raises:
ValueError: If data is being generated online for when using TPU's.
"""
# NCF evaluation metric calculation logic assumes that evaluation data
# sample size are in multiples of (1 + number of negative samples in
# evaluation) for each device. As so, evaluation batch size must be a
# multiple of (number of replicas * (1 + number of negative samples)).
num_devices = strategy.num_replicas_in_sync if strategy else 1
if (params["eval_batch_size"] % (num_devices *
(1 + rconst.NUM_EVAL_NEGATIVES))):
raise ValueError("Evaluation batch size must be divisible by {} "
"times {}".format(num_devices,
(1 + rconst.NUM_EVAL_NEGATIVES)))
if params["train_dataset_path"]:
assert params["eval_dataset_path"]
train_dataset = create_dataset_from_tf_record_files(
params["train_dataset_path"],
input_meta_data["train_prebatch_size"],
params["batch_size"],
is_training=True,
rebatch=False)
# Re-batch evaluation dataset for TPU Pods.
# TODO (b/162341937) remove once it's fixed.
eval_rebatch = (params["use_tpu"] and strategy.num_replicas_in_sync > 8)
eval_dataset = create_dataset_from_tf_record_files(
params["eval_dataset_path"],
input_meta_data["eval_prebatch_size"],
params["eval_batch_size"],
is_training=False,
rebatch=eval_rebatch)
num_train_steps = int(input_meta_data["num_train_steps"])
num_eval_steps = int(input_meta_data["num_eval_steps"])
else:
if params["use_tpu"]:
raise ValueError("TPU training does not support data producer yet. "
"Use pre-processed data.")
assert producer
# Start retrieving data from producer.
train_dataset, eval_dataset = create_dataset_from_data_producer(
producer, params)
num_train_steps = producer.train_batches_per_epoch
num_eval_steps = producer.eval_batches_per_epoch
return train_dataset, eval_dataset, num_train_steps, num_eval_steps
|