Spaces:
Runtime error
Runtime error
File size: 8,909 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Task for the Ranking model."""
import math
from typing import Dict, List, Optional, Union
import tensorflow as tf, tf_keras
import tensorflow_recommenders as tfrs
from official.core import base_task
from official.core import config_definitions
from official.recommendation.ranking import common
from official.recommendation.ranking.configs import config
from official.recommendation.ranking.data import data_pipeline
RuntimeConfig = config_definitions.RuntimeConfig
def _get_tpu_embedding_feature_config(
vocab_sizes: List[int],
embedding_dim: Union[int, List[int]],
table_name_prefix: str = 'embedding_table',
batch_size: Optional[int] = None
) -> Dict[str, tf.tpu.experimental.embedding.FeatureConfig]:
"""Returns TPU embedding feature config.
i'th table config will have vocab size of vocab_sizes[i] and embedding
dimension of embedding_dim if embedding_dim is an int or embedding_dim[i] if
embedding_dim is a list).
Args:
vocab_sizes: List of sizes of categories/id's in the table.
embedding_dim: An integer or a list of embedding table dimensions.
table_name_prefix: a prefix for embedding tables.
batch_size: Per-replica batch size.
Returns:
A dictionary of feature_name, FeatureConfig pairs.
"""
if isinstance(embedding_dim, List):
if len(vocab_sizes) != len(embedding_dim):
raise ValueError(
f'length of vocab_sizes: {len(vocab_sizes)} is not equal to the '
f'length of embedding_dim: {len(embedding_dim)}')
elif isinstance(embedding_dim, int):
embedding_dim = [embedding_dim] * len(vocab_sizes)
else:
raise ValueError('embedding_dim is not either a list or an int, got '
f'{type(embedding_dim)}')
feature_config = {}
for i, vocab_size in enumerate(vocab_sizes):
table_config = tf.tpu.experimental.embedding.TableConfig(
vocabulary_size=vocab_size,
dim=embedding_dim[i],
combiner='mean',
initializer=tf.initializers.TruncatedNormal(
mean=0.0, stddev=1 / math.sqrt(embedding_dim[i])),
name=table_name_prefix + '_%02d' % i)
feature_config[str(i)] = tf.tpu.experimental.embedding.FeatureConfig(
name=str(i),
table=table_config,
output_shape=[batch_size] if batch_size else None,
)
return feature_config
class RankingTask(base_task.Task):
"""A task for Ranking Model."""
def __init__(self,
params: config.Task,
trainer_config: config.TrainerConfig,
logging_dir: Optional[str] = None,
steps_per_execution: int = 1,
name: Optional[str] = None):
"""Task initialization.
Args:
params: the RankingModel task configuration instance.
trainer_config: Trainer configuration instance.
logging_dir: a string pointing to where the model, summaries etc. will be
saved.
steps_per_execution: Int. Defaults to 1. The number of batches to run
during each `tf.function` call. It's used for compile/fit API.
name: the task name.
"""
super().__init__(params, logging_dir, name=name)
self._trainer_config = trainer_config
self._optimizer_config = trainer_config.optimizer_config
self._steps_per_execution = steps_per_execution
def build_inputs(self, params, input_context=None):
"""Builds classification input."""
dataset = data_pipeline.CriteoTsvReader(
file_pattern=params.input_path,
params=params,
vocab_sizes=self.task_config.model.vocab_sizes,
num_dense_features=self.task_config.model.num_dense_features,
use_synthetic_data=self.task_config.use_synthetic_data)
return dataset(input_context)
@classmethod
def create_optimizer(cls, optimizer_config: config.OptimizationConfig,
runtime_config: Optional[RuntimeConfig] = None) -> None:
"""See base class. Return None, optimizer is set in `build_model`."""
return None
def build_model(self) -> tf_keras.Model:
"""Creates Ranking model architecture and Optimizers.
The RankingModel uses different optimizers/learning rates for embedding
variables and dense variables.
Returns:
A Ranking model instance.
"""
lr_config = self.optimizer_config.lr_config
lr_callable = common.WarmUpAndPolyDecay(
batch_size=self.task_config.train_data.global_batch_size,
decay_exp=lr_config.decay_exp,
learning_rate=lr_config.learning_rate,
warmup_steps=lr_config.warmup_steps,
decay_steps=lr_config.decay_steps,
decay_start_steps=lr_config.decay_start_steps)
embedding_optimizer = tf_keras.optimizers.get(
self.optimizer_config.embedding_optimizer, use_legacy_optimizer=True)
embedding_optimizer.learning_rate = lr_callable
dense_optimizer = tf_keras.optimizers.get(
self.optimizer_config.dense_optimizer, use_legacy_optimizer=True)
if self.optimizer_config.dense_optimizer == 'SGD':
dense_lr_config = self.optimizer_config.dense_sgd_config
dense_lr_callable = common.WarmUpAndPolyDecay(
batch_size=self.task_config.train_data.global_batch_size,
decay_exp=dense_lr_config.decay_exp,
learning_rate=dense_lr_config.learning_rate,
warmup_steps=dense_lr_config.warmup_steps,
decay_steps=dense_lr_config.decay_steps,
decay_start_steps=dense_lr_config.decay_start_steps)
dense_optimizer.learning_rate = dense_lr_callable
feature_config = _get_tpu_embedding_feature_config(
embedding_dim=self.task_config.model.embedding_dim,
vocab_sizes=self.task_config.model.vocab_sizes,
batch_size=self.task_config.train_data.global_batch_size
// tf.distribute.get_strategy().num_replicas_in_sync,
)
embedding_layer = tfrs.experimental.layers.embedding.PartialTPUEmbedding(
feature_config=feature_config,
optimizer=embedding_optimizer,
pipeline_execution_with_tensor_core=self.trainer_config.pipeline_sparse_and_dense_execution,
size_threshold=self.task_config.model.size_threshold,
)
if self.task_config.model.interaction == 'dot':
feature_interaction = tfrs.layers.feature_interaction.DotInteraction(
skip_gather=True)
elif self.task_config.model.interaction == 'cross':
feature_interaction = tf_keras.Sequential([
tf_keras.layers.Concatenate(),
tfrs.layers.feature_interaction.Cross()
])
else:
raise ValueError(
f'params.task.model.interaction {self.task_config.model.interaction} '
f'is not supported it must be either \'dot\' or \'cross\'.')
model = tfrs.experimental.models.Ranking(
embedding_layer=embedding_layer,
bottom_stack=tfrs.layers.blocks.MLP(
units=self.task_config.model.bottom_mlp, final_activation='relu'),
feature_interaction=feature_interaction,
top_stack=tfrs.layers.blocks.MLP(
units=self.task_config.model.top_mlp, final_activation='sigmoid'),
)
optimizer = tfrs.experimental.optimizers.CompositeOptimizer([
(embedding_optimizer, lambda: model.embedding_trainable_variables),
(dense_optimizer, lambda: model.dense_trainable_variables),
])
model.compile(optimizer, steps_per_execution=self._steps_per_execution)
return model
def train_step(
self,
inputs: Dict[str, tf.Tensor],
model: tf_keras.Model,
optimizer: tf_keras.optimizers.Optimizer,
metrics: Optional[List[tf_keras.metrics.Metric]] = None) -> tf.Tensor:
"""See base class."""
# All metrics need to be passed through the RankingModel.
assert metrics == model.metrics
return model.train_step(inputs)
def validation_step(
self,
inputs: Dict[str, tf.Tensor],
model: tf_keras.Model,
metrics: Optional[List[tf_keras.metrics.Metric]] = None) -> tf.Tensor:
"""See base class."""
# All metrics need to be passed through the RankingModel.
assert metrics == model.metrics
return model.test_step(inputs)
@property
def trainer_config(self) -> config.TrainerConfig:
return self._trainer_config
@property
def optimizer_config(self) -> config.OptimizationConfig:
return self._optimizer_config
|