Spaces:
Runtime error
Runtime error
File size: 6,604 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Train and evaluate the Ranking model."""
from typing import Dict
from absl import app
from absl import flags
from absl import logging
import tensorflow as tf, tf_keras
from official.common import distribute_utils
from official.core import base_trainer
from official.core import train_lib
from official.core import train_utils
from official.recommendation.ranking import common
from official.recommendation.ranking.task import RankingTask
from official.utils.misc import keras_utils
FLAGS = flags.FLAGS
class RankingTrainer(base_trainer.Trainer):
"""A trainer for Ranking Model.
The RankingModel has two optimizers for embedding and non embedding weights.
Overriding `train_loop_end` method to log learning rates for each optimizer.
"""
def train_loop_end(self) -> Dict[str, float]:
"""See base class."""
self.join()
logs = {}
for metric in self.train_metrics + [self.train_loss]:
logs[metric.name] = metric.result()
metric.reset_states()
for i, optimizer in enumerate(self.optimizer.optimizers):
lr_key = f'{type(optimizer).__name__}_{i}_learning_rate'
if callable(optimizer.learning_rate):
logs[lr_key] = optimizer.learning_rate(self.global_step)
else:
logs[lr_key] = optimizer.learning_rate
return logs
def main(_) -> None:
"""Train and evaluate the Ranking model."""
params = train_utils.parse_configuration(FLAGS)
mode = FLAGS.mode
model_dir = FLAGS.model_dir
if 'train' in FLAGS.mode:
# Pure eval modes do not output yaml files. Otherwise continuous eval job
# may race against the train job for writing the same file.
train_utils.serialize_config(params, model_dir)
if FLAGS.seed is not None:
logging.info('Setting tf seed.')
tf.random.set_seed(FLAGS.seed)
task = RankingTask(
params=params.task,
trainer_config=params.trainer,
logging_dir=model_dir,
steps_per_execution=params.trainer.steps_per_loop,
name='RankingTask')
enable_tensorboard = params.trainer.callbacks.enable_tensorboard
strategy = distribute_utils.get_distribution_strategy(
distribution_strategy=params.runtime.distribution_strategy,
all_reduce_alg=params.runtime.all_reduce_alg,
num_gpus=params.runtime.num_gpus,
tpu_address=params.runtime.tpu)
with strategy.scope():
model = task.build_model()
def get_dataset_fn(params):
return lambda input_context: task.build_inputs(params, input_context)
train_dataset = None
if 'train' in mode:
train_dataset = strategy.distribute_datasets_from_function(
get_dataset_fn(params.task.train_data),
options=tf.distribute.InputOptions(experimental_fetch_to_device=False))
validation_dataset = None
if 'eval' in mode:
validation_dataset = strategy.distribute_datasets_from_function(
get_dataset_fn(params.task.validation_data),
options=tf.distribute.InputOptions(experimental_fetch_to_device=False))
if params.trainer.use_orbit:
with strategy.scope():
checkpoint_exporter = train_utils.maybe_create_best_ckpt_exporter(
params, model_dir)
trainer = RankingTrainer(
config=params,
task=task,
model=model,
optimizer=model.optimizer,
train='train' in mode,
evaluate='eval' in mode,
train_dataset=train_dataset,
validation_dataset=validation_dataset,
checkpoint_exporter=checkpoint_exporter)
train_lib.run_experiment(
distribution_strategy=strategy,
task=task,
mode=mode,
params=params,
model_dir=model_dir,
trainer=trainer)
else: # Compile/fit
checkpoint = tf.train.Checkpoint(model=model, optimizer=model.optimizer)
latest_checkpoint = tf.train.latest_checkpoint(model_dir)
if latest_checkpoint:
checkpoint.restore(latest_checkpoint)
logging.info('Loaded checkpoint %s', latest_checkpoint)
checkpoint_manager = tf.train.CheckpointManager(
checkpoint,
directory=model_dir,
max_to_keep=params.trainer.max_to_keep,
step_counter=model.optimizer.iterations,
checkpoint_interval=params.trainer.checkpoint_interval)
checkpoint_callback = keras_utils.SimpleCheckpoint(checkpoint_manager)
time_callback = keras_utils.TimeHistory(
params.task.train_data.global_batch_size,
params.trainer.time_history.log_steps,
logdir=model_dir if enable_tensorboard else None)
callbacks = [checkpoint_callback, time_callback]
if enable_tensorboard:
tensorboard_callback = tf_keras.callbacks.TensorBoard(
log_dir=model_dir,
update_freq=min(1000, params.trainer.validation_interval),
profile_batch=FLAGS.profile_steps)
callbacks.append(tensorboard_callback)
num_epochs = (params.trainer.train_steps //
params.trainer.validation_interval)
current_step = model.optimizer.iterations.numpy()
initial_epoch = current_step // params.trainer.validation_interval
eval_steps = params.trainer.validation_steps if 'eval' in mode else None
if mode in ['train', 'train_and_eval']:
logging.info('Training started')
history = model.fit(
train_dataset,
initial_epoch=initial_epoch,
epochs=num_epochs,
steps_per_epoch=params.trainer.validation_interval,
validation_data=validation_dataset,
validation_steps=eval_steps,
callbacks=callbacks,
)
model.summary()
logging.info('Train history: %s', history.history)
elif mode == 'eval':
logging.info('Evaluation started')
validation_output = model.evaluate(validation_dataset, steps=eval_steps)
logging.info('Evaluation output: %s', validation_output)
else:
raise NotImplementedError('The mode is not implemented: %s' % mode)
if __name__ == '__main__':
logging.set_verbosity(logging.INFO)
common.define_flags()
app.run(main)
|