Spaces:
Runtime error
Runtime error
File size: 11,576 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Register flags for optimizing performance."""
import multiprocessing
from absl import flags # pylint: disable=g-bad-import-order
import tensorflow as tf, tf_keras # pylint: disable=g-bad-import-order
from official.utils.flags._conventions import help_wrap
# Map string to TensorFlow dtype
DTYPE_MAP = {
"fp16": tf.float16,
"bf16": tf.bfloat16,
"fp32": tf.float32,
}
def get_tf_dtype(flags_obj):
if getattr(flags_obj, "fp16_implementation", None) == "graph_rewrite":
# If the graph_rewrite is used, we build the graph with fp32, and let the
# graph rewrite change ops to fp16.
return tf.float32
return DTYPE_MAP[flags_obj.dtype]
def get_loss_scale(flags_obj, default_for_fp16):
dtype = get_tf_dtype(flags_obj)
if flags_obj.loss_scale == "dynamic":
return flags_obj.loss_scale
elif flags_obj.loss_scale is not None:
return float(flags_obj.loss_scale)
elif dtype == tf.float32 or dtype == tf.bfloat16:
return 1 # No loss scaling is needed for fp32
else:
assert dtype == tf.float16
return default_for_fp16
def define_performance(num_parallel_calls=False,
inter_op=False,
intra_op=False,
synthetic_data=False,
max_train_steps=False,
dtype=False,
all_reduce_alg=False,
num_packs=False,
tf_gpu_thread_mode=False,
datasets_num_private_threads=False,
datasets_num_parallel_batches=False,
fp16_implementation=False,
loss_scale=False,
tf_data_experimental_slack=False,
enable_xla=False,
training_dataset_cache=False):
"""Register flags for specifying performance tuning arguments.
Args:
num_parallel_calls: Create a flag to specify parallelism of data loading.
inter_op: Create a flag to allow specification of inter op threads.
intra_op: Create a flag to allow specification of intra op threads.
synthetic_data: Create a flag to allow the use of synthetic data.
max_train_steps: Create a flags to allow specification of maximum number of
training steps
dtype: Create flags for specifying dtype.
all_reduce_alg: If set forces a specific algorithm for multi-gpu.
num_packs: If set provides number of packs for MirroredStrategy's cross
device ops.
tf_gpu_thread_mode: gpu_private triggers us of private thread pool.
datasets_num_private_threads: Number of private threads for datasets.
datasets_num_parallel_batches: Determines how many batches to process in
parallel when using map and batch from tf.data.
fp16_implementation: Create fp16_implementation flag.
loss_scale: Controls the loss scaling, normally for mixed-precision
training. Can only be turned on if dtype is also True.
tf_data_experimental_slack: Determines whether to enable tf.data's
`experimental_slack` option.
enable_xla: Determines if XLA (auto clustering) is turned on.
training_dataset_cache: Whether to cache the training dataset on workers.
Typically used to improve training performance when training data is in
remote storage and can fit into worker memory.
Returns:
A list of flags for core.py to marks as key flags.
"""
key_flags = []
if num_parallel_calls:
flags.DEFINE_integer(
name="num_parallel_calls",
short_name="npc",
default=multiprocessing.cpu_count(),
help=help_wrap("The number of records that are processed in parallel "
"during input processing. This can be optimized per "
"data set but for generally homogeneous data sets, "
"should be approximately the number of available CPU "
"cores. (default behavior)"))
if inter_op:
flags.DEFINE_integer(
name="inter_op_parallelism_threads",
short_name="inter",
default=0,
help=help_wrap("Number of inter_op_parallelism_threads to use for CPU. "
"See TensorFlow config.proto for details."))
if intra_op:
flags.DEFINE_integer(
name="intra_op_parallelism_threads",
short_name="intra",
default=0,
help=help_wrap("Number of intra_op_parallelism_threads to use for CPU. "
"See TensorFlow config.proto for details."))
if synthetic_data:
flags.DEFINE_bool(
name="use_synthetic_data",
short_name="synth",
default=False,
help=help_wrap(
"If set, use fake data (zeroes) instead of a real dataset. "
"This mode is useful for performance debugging, as it removes "
"input processing steps, but will not learn anything."))
if max_train_steps:
flags.DEFINE_integer(
name="max_train_steps",
short_name="mts",
default=None,
help=help_wrap(
"The model will stop training if the global_step reaches this "
"value. If not set, training will run until the specified number "
"of epochs have run as usual. It is generally recommended to set "
"--train_epochs=1 when using this flag."))
if dtype:
flags.DEFINE_enum(
name="dtype",
short_name="dt",
default="fp32",
enum_values=DTYPE_MAP.keys(),
help=help_wrap("The TensorFlow datatype used for calculations. "
"For 16-bit dtypes, variables and certain ops will "
"still be float32 for numeric stability."))
if loss_scale:
flags.DEFINE_string(
name="loss_scale",
short_name="ls",
default=None,
help=help_wrap(
"The amount to scale the loss by when --dtype=fp16. This can be "
"an int/float or the string 'dynamic'. Before gradients are "
"computed, the loss is multiplied by the loss scale, making all "
"gradients loss_scale times larger. To adjust for this, "
"gradients are divided by the loss scale before being applied to "
"variables. This is mathematically equivalent to training "
"without a loss scale, but the loss scale helps avoid some "
"intermediate gradients from underflowing to zero. The default "
"is 'dynamic', which dynamic determines the optimal loss scale "
"during training."))
# pylint: disable=unused-variable
@flags.validator(
flag_name="loss_scale",
message="loss_scale should be a positive int/float or the string "
"'dynamic'.")
def _check_loss_scale(loss_scale):
"""Validator to check the loss scale flag is valid."""
if loss_scale is None:
return True # null case is handled in get_loss_scale()
if loss_scale == "dynamic":
return True
try:
loss_scale = float(loss_scale)
except ValueError:
return False
return loss_scale > 0
# pylint: enable=unused-variable
if fp16_implementation:
flags.DEFINE_enum(
name="fp16_implementation",
default="keras",
enum_values=("keras", "graph_rewrite"),
help=help_wrap(
"When --dtype=fp16, how fp16 should be implemented. This has no "
"impact on correctness. 'keras' uses the "
"tf_keras.mixed_precision API. 'graph_rewrite' uses the "
"tf.compat.v1.mixed_precision."
"enable_mixed_precision_graph_rewrite API."))
@flags.multi_flags_validator(
["fp16_implementation", "dtype", "loss_scale"])
def _check_fp16_implementation(flags_dict):
"""Validator to check fp16_implementation flag is valid."""
if (flags_dict["fp16_implementation"] == "graph_rewrite" and
flags_dict["dtype"] != "fp16"):
raise flags.ValidationError("--fp16_implementation should not be "
"specified unless --dtype=fp16")
return True
if all_reduce_alg:
flags.DEFINE_string(
name="all_reduce_alg",
short_name="ara",
default=None,
help=help_wrap("Defines the algorithm to use for performing all-reduce."
"When specified with MirroredStrategy for single "
"worker, this controls "
"tf.contrib.distribute.AllReduceCrossTowerOps. When "
"specified with MultiWorkerMirroredStrategy, this "
"controls "
"tf.distribute.experimental.CollectiveCommunication; "
"valid options are `ring` and `nccl`."))
if num_packs:
flags.DEFINE_integer(
name="num_packs",
default=1,
help=help_wrap("Sets `num_packs` in the cross device ops used in "
"MirroredStrategy. For details, see "
"tf.distribute.NcclAllReduce."))
if tf_gpu_thread_mode:
flags.DEFINE_string(
name="tf_gpu_thread_mode",
short_name="gt_mode",
default=None,
help=help_wrap(
"Whether and how the GPU device uses its own threadpool."))
flags.DEFINE_integer(
name="per_gpu_thread_count",
short_name="pgtc",
default=0,
help=help_wrap("The number of threads to use for GPU. Only valid when "
"tf_gpu_thread_mode is not global."))
if datasets_num_private_threads:
flags.DEFINE_integer(
name="datasets_num_private_threads",
default=None,
help=help_wrap(
"Number of threads for a private threadpool created for all"
"datasets computation.."))
if datasets_num_parallel_batches:
flags.DEFINE_integer(
name="datasets_num_parallel_batches",
default=None,
help=help_wrap(
"Determines how many batches to process in parallel when using "
"map and batch from tf.data."))
if training_dataset_cache:
flags.DEFINE_boolean(
name="training_dataset_cache",
default=False,
help=help_wrap(
"Determines whether to cache the training dataset on workers. "
"Typically used to improve training performance when training "
"data is in remote storage and can fit into worker memory."))
if tf_data_experimental_slack:
flags.DEFINE_boolean(
name="tf_data_experimental_slack",
default=False,
help=help_wrap(
"Whether to enable tf.data's `experimental_slack` option."))
if enable_xla:
flags.DEFINE_boolean(
name="enable_xla",
default=False,
help="Whether to enable XLA auto jit compilation")
return key_flags
|