File size: 11,576 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Register flags for optimizing performance."""

import multiprocessing

from absl import flags  # pylint: disable=g-bad-import-order
import tensorflow as tf, tf_keras  # pylint: disable=g-bad-import-order

from official.utils.flags._conventions import help_wrap

# Map string to TensorFlow dtype
DTYPE_MAP = {
    "fp16": tf.float16,
    "bf16": tf.bfloat16,
    "fp32": tf.float32,
}


def get_tf_dtype(flags_obj):
  if getattr(flags_obj, "fp16_implementation", None) == "graph_rewrite":
    # If the graph_rewrite is used, we build the graph with fp32, and let the
    # graph rewrite change ops to fp16.
    return tf.float32
  return DTYPE_MAP[flags_obj.dtype]


def get_loss_scale(flags_obj, default_for_fp16):
  dtype = get_tf_dtype(flags_obj)
  if flags_obj.loss_scale == "dynamic":
    return flags_obj.loss_scale
  elif flags_obj.loss_scale is not None:
    return float(flags_obj.loss_scale)
  elif dtype == tf.float32 or dtype == tf.bfloat16:
    return 1  # No loss scaling is needed for fp32
  else:
    assert dtype == tf.float16
    return default_for_fp16


def define_performance(num_parallel_calls=False,
                       inter_op=False,
                       intra_op=False,
                       synthetic_data=False,
                       max_train_steps=False,
                       dtype=False,
                       all_reduce_alg=False,
                       num_packs=False,
                       tf_gpu_thread_mode=False,
                       datasets_num_private_threads=False,
                       datasets_num_parallel_batches=False,
                       fp16_implementation=False,
                       loss_scale=False,
                       tf_data_experimental_slack=False,
                       enable_xla=False,
                       training_dataset_cache=False):
  """Register flags for specifying performance tuning arguments.

  Args:
    num_parallel_calls: Create a flag to specify parallelism of data loading.
    inter_op: Create a flag to allow specification of inter op threads.
    intra_op: Create a flag to allow specification of intra op threads.
    synthetic_data: Create a flag to allow the use of synthetic data.
    max_train_steps: Create a flags to allow specification of maximum number of
      training steps
    dtype: Create flags for specifying dtype.
    all_reduce_alg: If set forces a specific algorithm for multi-gpu.
    num_packs: If set provides number of packs for MirroredStrategy's cross
      device ops.
    tf_gpu_thread_mode: gpu_private triggers us of private thread pool.
    datasets_num_private_threads: Number of private threads for datasets.
    datasets_num_parallel_batches: Determines how many batches to process in
      parallel when using map and batch from tf.data.
    fp16_implementation: Create fp16_implementation flag.
    loss_scale: Controls the loss scaling, normally for mixed-precision
      training. Can only be turned on if dtype is also True.
    tf_data_experimental_slack: Determines whether to enable tf.data's
      `experimental_slack` option.
    enable_xla: Determines if XLA (auto clustering) is turned on.
    training_dataset_cache: Whether to cache the training dataset on workers.
      Typically used to improve training performance when training data is in
      remote storage and can fit into worker memory.

  Returns:
    A list of flags for core.py to marks as key flags.
  """

  key_flags = []
  if num_parallel_calls:
    flags.DEFINE_integer(
        name="num_parallel_calls",
        short_name="npc",
        default=multiprocessing.cpu_count(),
        help=help_wrap("The number of records that are  processed in parallel "
                       "during input processing. This can be optimized per "
                       "data set but for generally homogeneous data sets, "
                       "should be approximately the number of available CPU "
                       "cores. (default behavior)"))

  if inter_op:
    flags.DEFINE_integer(
        name="inter_op_parallelism_threads",
        short_name="inter",
        default=0,
        help=help_wrap("Number of inter_op_parallelism_threads to use for CPU. "
                       "See TensorFlow config.proto for details."))

  if intra_op:
    flags.DEFINE_integer(
        name="intra_op_parallelism_threads",
        short_name="intra",
        default=0,
        help=help_wrap("Number of intra_op_parallelism_threads to use for CPU. "
                       "See TensorFlow config.proto for details."))

  if synthetic_data:
    flags.DEFINE_bool(
        name="use_synthetic_data",
        short_name="synth",
        default=False,
        help=help_wrap(
            "If set, use fake data (zeroes) instead of a real dataset. "
            "This mode is useful for performance debugging, as it removes "
            "input processing steps, but will not learn anything."))

  if max_train_steps:
    flags.DEFINE_integer(
        name="max_train_steps",
        short_name="mts",
        default=None,
        help=help_wrap(
            "The model will stop training if the global_step reaches this "
            "value. If not set, training will run until the specified number "
            "of epochs have run as usual. It is generally recommended to set "
            "--train_epochs=1 when using this flag."))

  if dtype:
    flags.DEFINE_enum(
        name="dtype",
        short_name="dt",
        default="fp32",
        enum_values=DTYPE_MAP.keys(),
        help=help_wrap("The TensorFlow datatype used for calculations. "
                       "For 16-bit dtypes, variables and certain ops will "
                       "still be float32 for numeric stability."))

    if loss_scale:
      flags.DEFINE_string(
          name="loss_scale",
          short_name="ls",
          default=None,
          help=help_wrap(
              "The amount to scale the loss by when --dtype=fp16. This can be "
              "an int/float or the string 'dynamic'. Before gradients are "
              "computed, the loss is multiplied by the loss scale, making all "
              "gradients loss_scale times larger. To adjust for this, "
              "gradients are divided by the loss scale before being applied to "
              "variables. This is mathematically equivalent to training "
              "without a loss scale, but the loss scale helps avoid some "
              "intermediate gradients from underflowing to zero. The default "
              "is 'dynamic', which dynamic determines the optimal loss scale "
              "during training."))

      # pylint: disable=unused-variable
      @flags.validator(
          flag_name="loss_scale",
          message="loss_scale should be a positive int/float or the string "
                  "'dynamic'.")
      def _check_loss_scale(loss_scale):
        """Validator to check the loss scale flag is valid."""
        if loss_scale is None:
          return True  # null case is handled in get_loss_scale()

        if loss_scale == "dynamic":
          return True

        try:
          loss_scale = float(loss_scale)
        except ValueError:
          return False

        return loss_scale > 0
      # pylint: enable=unused-variable

    if fp16_implementation:
      flags.DEFINE_enum(
          name="fp16_implementation",
          default="keras",
          enum_values=("keras", "graph_rewrite"),
          help=help_wrap(
              "When --dtype=fp16, how fp16 should be implemented. This has no "
              "impact on correctness. 'keras' uses the "
              "tf_keras.mixed_precision API. 'graph_rewrite' uses the "
              "tf.compat.v1.mixed_precision."
              "enable_mixed_precision_graph_rewrite API."))

      @flags.multi_flags_validator(
          ["fp16_implementation", "dtype", "loss_scale"])
      def _check_fp16_implementation(flags_dict):
        """Validator to check fp16_implementation flag is valid."""
        if (flags_dict["fp16_implementation"] == "graph_rewrite" and
            flags_dict["dtype"] != "fp16"):
          raise flags.ValidationError("--fp16_implementation should not be "
                                      "specified unless --dtype=fp16")
        return True

  if all_reduce_alg:
    flags.DEFINE_string(
        name="all_reduce_alg",
        short_name="ara",
        default=None,
        help=help_wrap("Defines the algorithm to use for performing all-reduce."
                       "When specified with MirroredStrategy for single "
                       "worker, this controls "
                       "tf.contrib.distribute.AllReduceCrossTowerOps.  When "
                       "specified with MultiWorkerMirroredStrategy, this "
                       "controls "
                       "tf.distribute.experimental.CollectiveCommunication; "
                       "valid options are `ring` and `nccl`."))

  if num_packs:
    flags.DEFINE_integer(
        name="num_packs",
        default=1,
        help=help_wrap("Sets `num_packs` in the cross device ops used in "
                       "MirroredStrategy.  For details, see "
                       "tf.distribute.NcclAllReduce."))

  if tf_gpu_thread_mode:
    flags.DEFINE_string(
        name="tf_gpu_thread_mode",
        short_name="gt_mode",
        default=None,
        help=help_wrap(
            "Whether and how the GPU device uses its own threadpool."))

    flags.DEFINE_integer(
        name="per_gpu_thread_count",
        short_name="pgtc",
        default=0,
        help=help_wrap("The number of threads to use for GPU. Only valid when "
                       "tf_gpu_thread_mode is not global."))

  if datasets_num_private_threads:
    flags.DEFINE_integer(
        name="datasets_num_private_threads",
        default=None,
        help=help_wrap(
            "Number of threads for a private threadpool created for all"
            "datasets computation.."))

  if datasets_num_parallel_batches:
    flags.DEFINE_integer(
        name="datasets_num_parallel_batches",
        default=None,
        help=help_wrap(
            "Determines how many batches to process in parallel when using "
            "map and batch from tf.data."))

  if training_dataset_cache:
    flags.DEFINE_boolean(
        name="training_dataset_cache",
        default=False,
        help=help_wrap(
            "Determines whether to cache the training dataset on workers. "
            "Typically used to improve training performance when training "
            "data is in remote storage and can fit into worker memory."))

  if tf_data_experimental_slack:
    flags.DEFINE_boolean(
        name="tf_data_experimental_slack",
        default=False,
        help=help_wrap(
            "Whether to enable tf.data's `experimental_slack` option."))

  if enable_xla:
    flags.DEFINE_boolean(
        name="enable_xla",
        default=False,
        help="Whether to enable XLA auto jit compilation")

  return key_flags