File size: 7,793 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Helper functions for the Keras implementations of models."""

import multiprocessing
import os
import time

from absl import logging
import tensorflow as tf, tf_keras

from tensorflow.python.eager import monitoring

global_batch_size_gauge = monitoring.IntGauge(
    '/tensorflow/training/global_batch_size', 'TF training global batch size')

first_batch_time_gauge = monitoring.IntGauge(
    '/tensorflow/training/first_batch',
    'TF training start/end time for first batch (unix epoch time in us.',
    'type')

first_batch_start_time = first_batch_time_gauge.get_cell('start')
first_batch_end_time = first_batch_time_gauge.get_cell('end')


class BatchTimestamp(object):
  """A structure to store batch time stamp."""

  def __init__(self, batch_index, timestamp):
    self.batch_index = batch_index
    self.timestamp = timestamp

  def __repr__(self):
    return "'BatchTimestamp<batch_index: {}, timestamp: {}>'".format(
        self.batch_index, self.timestamp)


class TimeHistory(tf_keras.callbacks.Callback):
  """Callback for Keras models."""

  def __init__(self, batch_size, log_steps, initial_step=0, logdir=None):
    """Callback for logging performance.

    Args:
      batch_size: Total batch size.
      log_steps: Interval of steps between logging of batch level stats.
      initial_step: Optional, initial step.
      logdir: Optional directory to write TensorBoard summaries.
    """
    # TODO(wcromar): remove this parameter and rely on `logs` parameter of
    # on_train_batch_end()
    self.batch_size = batch_size
    super(TimeHistory, self).__init__()
    self.log_steps = log_steps
    self.last_log_step = initial_step
    self.steps_before_epoch = initial_step
    self.steps_in_epoch = 0
    self.start_time = None

    global_batch_size_gauge.get_cell().set(batch_size)

    if logdir:
      self.summary_writer = tf.summary.create_file_writer(logdir)
    else:
      self.summary_writer = None

    # Logs start of step 1 then end of each step based on log_steps interval.
    self.timestamp_log = []

    # Records the time each epoch takes to run from start to finish of epoch.
    self.epoch_runtime_log = []

  @property
  def global_steps(self):
    """The current 1-indexed global step."""
    return self.steps_before_epoch + self.steps_in_epoch

  @property
  def average_steps_per_second(self):
    """The average training steps per second across all epochs."""
    return self.global_steps / sum(self.epoch_runtime_log)

  @property
  def average_examples_per_second(self):
    """The average number of training examples per second across all epochs."""
    return self.average_steps_per_second * self.batch_size

  def get_examples_per_sec(self, warmup=1):
    """Calculates examples/sec through timestamp_log and skip warmup period."""
    # First entry in timestamp_log is the start of the step 1. The rest of the
    # entries are the end of each step recorded.
    time_log = self.timestamp_log
    seconds = time_log[-1].timestamp - time_log[warmup].timestamp
    steps = time_log[-1].batch_index - time_log[warmup].batch_index
    return self.batch_size * steps / seconds

  def get_startup_time(self, start_time_sec):
    return self.timestamp_log[0].timestamp - start_time_sec

  def on_train_end(self, logs=None):
    self.train_finish_time = time.time()

    if self.summary_writer:
      self.summary_writer.flush()

  def on_epoch_begin(self, epoch, logs=None):
    self.epoch_start = time.time()

  def on_batch_begin(self, batch, logs=None):
    if not self.start_time:
      self.start_time = time.time()
      if not first_batch_start_time.value():
        first_batch_start_time.set(int(self.start_time * 1000000))

    # Record the timestamp of the first global step
    if not self.timestamp_log:
      self.timestamp_log.append(
          BatchTimestamp(self.global_steps, self.start_time))

  def on_batch_end(self, batch, logs=None):
    """Records elapse time of the batch and calculates examples per second."""
    if not first_batch_end_time.value():
      first_batch_end_time.set(int(time.time() * 1000000))
    self.steps_in_epoch = batch + 1
    steps_since_last_log = self.global_steps - self.last_log_step
    if steps_since_last_log >= self.log_steps:
      now = time.time()
      elapsed_time = now - self.start_time
      steps_per_second = steps_since_last_log / elapsed_time
      examples_per_second = steps_per_second * self.batch_size

      self.timestamp_log.append(BatchTimestamp(self.global_steps, now))
      logging.info(
          'TimeHistory: %.2f seconds, %.2f examples/second between steps %d '
          'and %d', elapsed_time, examples_per_second, self.last_log_step,
          self.global_steps)

      if self.summary_writer:
        with self.summary_writer.as_default():
          tf.summary.scalar('steps_per_second', steps_per_second,
                            self.global_steps)
          tf.summary.scalar('examples_per_second', examples_per_second,
                            self.global_steps)

      self.last_log_step = self.global_steps
      self.start_time = None

  def on_epoch_end(self, epoch, logs=None):
    epoch_run_time = time.time() - self.epoch_start
    self.epoch_runtime_log.append(epoch_run_time)

    self.steps_before_epoch += self.steps_in_epoch
    self.steps_in_epoch = 0


class SimpleCheckpoint(tf_keras.callbacks.Callback):
  """Keras callback to save tf.train.Checkpoints."""

  def __init__(self, checkpoint_manager):
    super(SimpleCheckpoint, self).__init__()
    self.checkpoint_manager = checkpoint_manager

  def on_epoch_end(self, epoch, logs=None):
    step_counter = self.checkpoint_manager._step_counter.numpy()  # pylint: disable=protected-access
    self.checkpoint_manager.save(checkpoint_number=step_counter)


def set_session_config(enable_xla=False):
  """Sets the session config."""
  if enable_xla:
    tf.config.optimizer.set_jit(True)


# TODO(hongkuny): remove set_config_v2 globally.
set_config_v2 = set_session_config


def set_gpu_thread_mode_and_count(gpu_thread_mode, datasets_num_private_threads,
                                  num_gpus, per_gpu_thread_count):
  """Set GPU thread mode and count, and adjust dataset threads count."""
  cpu_count = multiprocessing.cpu_count()
  logging.info('Logical CPU cores: %s', cpu_count)

  # Allocate private thread pool for each GPU to schedule and launch kernels
  per_gpu_thread_count = per_gpu_thread_count or 2
  os.environ['TF_GPU_THREAD_MODE'] = gpu_thread_mode
  os.environ['TF_GPU_THREAD_COUNT'] = str(per_gpu_thread_count)
  logging.info('TF_GPU_THREAD_COUNT: %s', os.environ['TF_GPU_THREAD_COUNT'])
  logging.info('TF_GPU_THREAD_MODE: %s', os.environ['TF_GPU_THREAD_MODE'])

  # Limit data preprocessing threadpool to CPU cores minus number of total GPU
  # private threads and memory copy threads.
  total_gpu_thread_count = per_gpu_thread_count * num_gpus
  num_runtime_threads = num_gpus
  if not datasets_num_private_threads:
    datasets_num_private_threads = min(
        cpu_count - total_gpu_thread_count - num_runtime_threads, num_gpus * 8)
    logging.info('Set datasets_num_private_threads to %s',
                 datasets_num_private_threads)