Spaces:
Runtime error
Runtime error
File size: 29,114 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Metrics for instance detection & segmentation."""
from typing import Any, Dict, Optional, Tuple, Union
import numpy as np
import tensorflow as tf, tf_keras
from official.vision.ops import box_ops
from official.vision.ops import mask_ops
class AveragePrecision(tf_keras.layers.Layer):
"""The algorithm which computes average precision from P-R curve."""
def __init__(self, *args, **kwargs):
# Enforce the `AveragePrecision` to operate in `float32` given the
# implementation requirements.
super().__init__(*args, dtype=tf.float32, **kwargs)
def call(self, precisions, recalls):
"""Computes average precision."""
raise NotImplementedError
class COCOAveragePrecision(AveragePrecision):
"""Average precision in COCO style.
In COCO, AP is defined as the mean of interpolated precisions at a set of 101
equally spaced recall points [0, 0.01, ..., 1]. For each recall point r,
the precision is interpolated to the maximum precision with corresponding
recall r' >= r.
The VOC challenges before 2010 used the similar method, but only 11 recall
points [0, 0.1, ..., 1].
"""
def __init__(
self, num_recall_eval_points: int = 101, recalls_desc: bool = False
):
"""Initialization for COCOAveragePrecision.
Args:
num_recall_eval_points: the number of equally spaced recall points used
for interpolating the precisions.
recalls_desc: If true, the recalls are in descending order.
"""
super().__init__()
self._num_recall_eval_points = num_recall_eval_points
self._recalls_desc = recalls_desc
def get_config(self) -> Dict[str, Any]:
return {
'num_recall_eval_points': self._num_recall_eval_points,
'recalls_desc': self._recalls_desc,
}
def call(self, precisions: tf.Tensor, recalls: tf.Tensor) -> tf.Tensor:
"""Computes average precision.
Args:
precisions: a tensor in shape (dim_0, ..., num_confidences) which stores a
list of precision values at different confidence thresholds with
arbitrary numbers of leading dimensions.
recalls: a tensor in shape (dim_0, ..., num_confidences) which stores a
list of recall values at different confidence threshold with arbitrary
numbers of leading dimensions.
Returns:
A tensor in shape (dim_0, ...), which stores the area under P-R curve.
"""
p = precisions
r = recalls
if not isinstance(p, tf.Tensor):
p = tf.convert_to_tensor(p)
if not isinstance(r, tf.Tensor):
r = tf.convert_to_tensor(r)
if self._recalls_desc:
p = tf.reverse(p, axis=[-1])
r = tf.reverse(r, axis=[-1])
r_eval_points = tf.linspace(0.0, 1.0, self._num_recall_eval_points)
# (dim_0, ..., num_recall_eval_points)
# For each recall eval point, the precision is interpolated to the maximum
# precision with corresponding recall >= the recall eval point.
p_max = tf.reduce_max(
p[..., tf.newaxis, :]
* tf.cast(
r[..., tf.newaxis, :] >= r_eval_points[:, tf.newaxis], dtype=p.dtype
),
axis=-1,
)
# (dim_0, ...)
return tf.reduce_mean(p_max, axis=-1)
class VOC2010AveragePrecision(AveragePrecision):
"""Average precision in VOC 2010 style.
Since VOC 2010, first compute an approximation of the measured P-R curve
with precision monotonically decreasing, by setting the precision for recall
r to the maximum precision obtained for any recall r' >= r. Then compute the
AP as the area under this curve by numerical integration.
"""
def __init__(self, recalls_desc: bool = False):
"""Initialization for VOC10AveragePrecision.
Args:
recalls_desc: If true, the recalls are in descending order.
"""
super().__init__()
self._recalls_desc = recalls_desc
def get_config(self) -> Dict[str, Any]:
return {
'recalls_desc': self._recalls_desc,
}
def call(self, precisions: tf.Tensor, recalls: tf.Tensor) -> tf.Tensor:
"""Computes average precision.
Args:
precisions: a tensor in shape (dim_0, ..., num_confidences) which stores a
list of precision values at different confidence thresholds with
arbitrary numbers of leading dimensions.
recalls: a tensor in shape (dim_0, ..., num_confidences) which stores a
list of recall values at different confidence threshold with arbitrary
numbers of leading dimensions.
Returns:
A tensor in shape (dim_0, ...), which stores the area under P-R curve.
"""
p = precisions
r = recalls
if not isinstance(p, tf.Tensor):
p = tf.convert_to_tensor(p)
if not isinstance(r, tf.Tensor):
r = tf.convert_to_tensor(r)
if self._recalls_desc:
p = tf.reverse(p, axis=[-1])
r = tf.reverse(r, axis=[-1])
axis_indices = list(range(len(p.get_shape())))
# Transpose to (num_confidences, ...), because tf.scan only applies to the
# first dimension.
p = tf.transpose(p, np.roll(axis_indices, 1))
# Compute cumulative maximum in reverse order.
# For example, the reverse cumulative maximum of [5,6,3,4,2,1] is
# [6,6,4,4,2,1].
p = tf.scan(
tf.maximum, elems=p, initializer=tf.reduce_min(p, axis=0), reverse=True
)
# Transpose back to (..., num_confidences)
p = tf.transpose(p, np.roll(axis_indices, -1))
# Prepend 0 to r and compute the delta.
r = tf.concat([tf.zeros_like(r[..., 0:1]), r], axis=-1)
delta_r = tf.roll(r, shift=-1, axis=-1) - r
return tf.reduce_sum(p * delta_r[..., :-1], axis=-1)
class MatchingAlgorithm(tf_keras.layers.Layer):
"""The algorithm which matches detections to ground truths."""
def __init__(self, *args, **kwargs):
# Enforce the `MachingAlgorithm` to operate in `float32` given the
# implementation requirements.
super().__init__(*args, dtype=tf.float32, **kwargs)
def call(
self,
detection_to_gt_ious: tf.Tensor,
detection_classes: tf.Tensor,
detection_scores: tf.Tensor,
gt_classes: tf.Tensor,
):
"""Matches detections to ground truths."""
raise NotImplementedError
class COCOMatchingAlgorithm(MatchingAlgorithm):
"""The detection matching algorithm used in COCO."""
def __init__(self, iou_thresholds: Tuple[float, ...]):
"""Initialization for COCOMatchingAlgorithm.
Args:
iou_thresholds: a list of IoU thresholds.
"""
super().__init__()
self._iou_thresholds = iou_thresholds
def get_config(self) -> Dict[str, Any]:
return {
'iou_thresholds': self._iou_thresholds,
}
def call(
self,
detection_to_gt_ious: tf.Tensor,
detection_classes: tf.Tensor,
detection_scores: tf.Tensor,
gt_classes: tf.Tensor,
) -> Tuple[tf.Tensor, tf.Tensor]:
"""Matches detections to ground truths.
This is the matching algorithm used in COCO. First, sort all the detections
based on the scores from high to low. Then for each detection, iterates
through all ground truth. The unmatched ground truth with the highest IoU
greater than the threshold is matched to the detection.
Args:
detection_to_gt_ious: a tensor in shape of (batch_size, num_detections,
num_gts) which stores the IoUs for each pair of detection and ground
truth.
detection_classes: a tensor in shape of (batch_size, num_detections) which
stores the classes of the detections.
detection_scores: a tensor in shape of (batch_size, num_detections) which
stores the scores of the detections.
gt_classes: a tensor in shape of (batch_size, num_gts) which stores the
classes of the ground truth boxes.
Returns:
Two bool tensors in shape of (batch_size, num_detections,
num_iou_thresholds) and (batch_size, num_gts, num_iou_thresholds) which
indicates whether the detections and ground truths are true positives at
different IoU thresholds.
"""
batch_size = tf.shape(detection_classes)[0]
num_detections = detection_classes.get_shape()[1]
num_gts = gt_classes.get_shape()[1]
num_iou_thresholds = len(self._iou_thresholds)
# (batch_size, num_detections)
sorted_detection_indices = tf.argsort(
detection_scores, axis=1, direction='DESCENDING'
)
# (batch_size, num_detections)
sorted_detection_classes = tf.gather(
detection_classes, sorted_detection_indices, batch_dims=1
)
# (batch_size, num_detections, num_gts)
sorted_detection_to_gt_ious = tf.gather(
detection_to_gt_ious, sorted_detection_indices, batch_dims=1
)
init_loop_vars = (
0, # i: the loop counter
tf.zeros(
[batch_size, num_detections, num_iou_thresholds], dtype=tf.bool
), # detection_is_tp
tf.zeros(
[batch_size, num_gts, num_iou_thresholds], dtype=tf.bool
), # gt_is_tp
)
def _match_detection_to_gt_loop_body(
i: int, detection_is_tp: tf.Tensor, gt_is_tp: tf.Tensor
) -> Tuple[int, tf.Tensor, tf.Tensor]:
"""Iterates the sorted detections and matches to the ground truths."""
# (batch_size, num_gts)
gt_ious = sorted_detection_to_gt_ious[:, i, :]
# (batch_size, num_gts, num_iou_thresholds)
gt_matches_detection = (
# Ground truth is not matched yet.
~gt_is_tp
# IoU is greater than the threshold.
& (gt_ious[:, :, tf.newaxis] > self._iou_thresholds)
# Classes are matched.
& (
(sorted_detection_classes[:, i][:, tf.newaxis] == gt_classes)
& (gt_classes > 0)
)[:, :, tf.newaxis]
)
# Finds the matched ground truth with max IoU.
# If there is no matched ground truth, the argmax op will return index 0
# in this step. It's fine because it will be masked out in the next step.
# (batch_size, num_iou_thresholds)
matched_gt_with_max_iou = tf.argmax(
tf.cast(gt_matches_detection, gt_ious.dtype)
* gt_ious[:, :, tf.newaxis],
axis=1,
output_type=tf.int32,
)
# (batch_size, num_gts, num_iou_thresholds)
gt_matches_detection &= tf.one_hot(
matched_gt_with_max_iou,
depth=num_gts,
on_value=True,
off_value=False,
axis=1,
)
# Updates detection_is_tp
# Map index back to the unsorted detections.
# (batch_size, num_detections, num_iou_thresholds)
detection_is_tp |= (
tf.reduce_any(gt_matches_detection, axis=1, keepdims=True)
& tf.one_hot(
sorted_detection_indices[:, i],
depth=num_detections,
on_value=True,
off_value=False,
axis=-1,
)[:, :, tf.newaxis]
)
detection_is_tp.set_shape([None, num_detections, num_iou_thresholds])
# Updates gt_is_tp
# (batch_size, num_gts, num_iou_thresholds)
gt_is_tp |= gt_matches_detection
gt_is_tp.set_shape([None, num_gts, num_iou_thresholds])
# Returns the updated loop vars.
return (i + 1, detection_is_tp, gt_is_tp)
_, detection_is_tp_result, gt_is_tp_result = tf.while_loop(
cond=lambda i, *_: i < num_detections,
body=_match_detection_to_gt_loop_body,
loop_vars=init_loop_vars,
parallel_iterations=32,
maximum_iterations=num_detections,
)
return detection_is_tp_result, gt_is_tp_result
def _shift_and_rescale_boxes(
boxes: tf.Tensor,
output_boundary: Tuple[int, int],
) -> tf.Tensor:
"""Shift and rescale the boxes to fit in the output boundary.
The output boundary of the boxes can be smaller than the original image size
for accelerating the downstream calculations (dynamic mask resizing, mask IoU,
etc.).
For each image of the batch:
(1) find the upper boundary (min_ymin) and the left boundary (min_xmin) of all
the boxes.
(2) shift all the boxes up min_ymin pixels and left min_xmin pixels.
(3) find the new lower boundary (max_ymax) and the right boundary (max_xmax)
of all the boxes.
(4) if max_ymax > output_height or max_xmax > output_width (some boxes don't
fit in the output boundary), downsample all the boxes by ratio:
min(output_height / max_ymax, output_width / max_xmax). The aspect ratio
is not changed.
Args:
boxes: a tensor with a shape of [batch_size, N, 4]. The last dimension is
the pixel coordinates in [ymin, xmin, ymax, xmax] form.
output_boundary: two integers that represent the height and width of the
output.
Returns:
The tensor [batch_size, N, 4] of the output boxes.
"""
boxes = tf.cast(boxes, dtype=tf.float32)
# (batch_size, num_boxes, 1)
is_valid_box = tf.reduce_any(
(boxes[:, :, 2:4] - boxes[:, :, 0:2]) > 0, axis=-1, keepdims=True
)
# (batch_size, 2)
min_ymin_xmin = tf.reduce_min(
tf.where(is_valid_box, boxes, np.inf)[:, :, 0:2],
axis=1,
)
# (batch_size, num_boxes, 4)
boxes = tf.where(
is_valid_box,
boxes - tf.tile(min_ymin_xmin, [1, 2])[:, tf.newaxis, :],
0.0,
)
# (batch_size,)
max_ymax = tf.reduce_max(boxes[:, :, 2], axis=1)
max_xmax = tf.reduce_max(boxes[:, :, 3], axis=1)
# (batch_size,)
y_resize_ratio = output_boundary[0] / max_ymax
x_resize_ratio = output_boundary[1] / max_xmax
# (batch_size,)
downsampling_ratio = tf.math.minimum(
tf.math.minimum(y_resize_ratio, x_resize_ratio), 1.0
)
# (batch_size, num_boxes, 4)
return boxes * downsampling_ratio[:, tf.newaxis, tf.newaxis]
def _count_detection_type(
detection_type_mask: tf.Tensor,
detection_classes: tf.Tensor,
flattened_binned_confidence_one_hot: tf.Tensor,
num_classes: int,
) -> tf.Tensor:
"""Counts detection type grouped by IoU thresholds, classes and confidence bins.
Args:
detection_type_mask: a bool tensor in shape of (batch_size, num_detections,
num_iou_thresholds), which indicate a certain type of detections (e.g.
true postives).
detection_classes: a tensor in shape of (batch_size, num_detections) which
stores the classes of the detections.
flattened_binned_confidence_one_hot: a one-hot bool tensor in shape of
(batch_size * num_detections, num_confidence_bins + 1) which indicates the
binned confidence score of each detection.
num_classes: the number of classes.
Returns:
A tensor in shape of (num_iou_thresholds, num_classes,
num_confidence_bins + 1) which stores the count grouped by IoU thresholds,
classes and confidence bins.
"""
num_iou_thresholds = detection_type_mask.get_shape()[-1]
# (batch_size, num_detections, num_iou_thresholds)
masked_classes = tf.where(
detection_type_mask, detection_classes[..., tf.newaxis], -1
)
# (num_iou_thresholds, batch_size * num_detections)
flattened_masked_classes = tf.transpose(
tf.reshape(masked_classes, [-1, num_iou_thresholds])
)
# (num_iou_thresholds, num_classes, batch_size * num_detections)
flattened_masked_classes_one_hot = tf.one_hot(
flattened_masked_classes, depth=num_classes, axis=1
)
# (num_iou_thresholds * num_classes, batch_size * num_detections)
flattened_masked_classes_one_hot = tf.reshape(
flattened_masked_classes_one_hot,
[num_iou_thresholds * num_classes, -1],
)
# (num_iou_thresholds * num_classes, num_confidence_bins + 1)
count = tf.matmul(
flattened_masked_classes_one_hot,
tf.cast(flattened_binned_confidence_one_hot, tf.float32),
a_is_sparse=True,
b_is_sparse=True,
)
# (num_iou_thresholds, num_classes, num_confidence_bins + 1)
count = tf.reshape(count, [num_iou_thresholds, num_classes, -1])
# Clears the count of class 0 (background)
count *= 1.0 - tf.eye(num_classes, 1, dtype=count.dtype)
return count
class InstanceMetrics(tf_keras.metrics.Metric):
"""Reports the metrics of instance detection & segmentation."""
def __init__(
self,
num_classes: int,
use_masks: bool = False,
iou_thresholds: Tuple[float, ...] = (0.5,),
confidence_thresholds: Tuple[float, ...] = (),
num_confidence_bins: int = 1000,
mask_output_boundary: Tuple[int, int] = (640, 640),
matching_algorithm: Optional[MatchingAlgorithm] = None,
average_precision_algorithms: Optional[
Dict[str, AveragePrecision]
] = None,
name: Optional[str] = None,
dtype: Optional[Union[str, tf.dtypes.DType]] = tf.float32,
**kwargs
):
"""Initialization for AveragePrecision.
Args:
num_classes: the number of classes.
use_masks: if true, use the masks of the instances when calculating the
metrics, otherwise use the boxes.
iou_thresholds: a sequence of IoU thresholds over which to calculate the
instance metrics.
confidence_thresholds: a sequence of confidence thresholds. If set, also
report precision and recall at each confidence threshold, otherwise,
only report average precision.
num_confidence_bins: the number of confidence bins used for bin sort.
mask_output_boundary: two integers that represent the height and width of
the boundary where the resized instance masks are pasted. For each
example, if any of the detection or ground truth boxes is out of the
boundary, shift and resize all the detection and ground truth boxes of
the example to fit them into the boundary. The output boundary of the
pasted masks can be smaller than the real image size for accelerating
the calculation.
matching_algorithm: the algorithm which matches detections to ground
truths.
average_precision_algorithms: the algorithms which compute average
precision from P-R curve. The keys are used in the metrics results.
name: the name of the metric instance.
dtype: data type of the metric result.
**kwargs: Additional keywords arguments.
"""
super().__init__(name=name, dtype=dtype, **kwargs)
self._num_classes = num_classes
self._use_masks = use_masks
self._iou_thresholds = iou_thresholds
self._confidence_thresholds = confidence_thresholds
self._num_iou_thresholds = len(iou_thresholds)
self._num_confidence_bins = num_confidence_bins
self._mask_output_boundary = mask_output_boundary
if not matching_algorithm:
self._matching_algorithm = COCOMatchingAlgorithm(iou_thresholds)
else:
self._matching_algorithm = matching_algorithm
if not average_precision_algorithms:
self._average_precision_algorithms = {'ap': COCOAveragePrecision()}
else:
self._average_precision_algorithms = average_precision_algorithms
# Variables
self.tp_count = self.add_weight(
'tp_count',
shape=[
self._num_iou_thresholds,
self._num_classes,
self._num_confidence_bins + 1,
],
initializer='zeros',
dtype=tf.float32,
)
self.fp_count = self.add_weight(
'fp_count',
shape=[
self._num_iou_thresholds,
self._num_classes,
self._num_confidence_bins + 1,
],
initializer='zeros',
dtype=tf.float32,
)
self.gt_count = self.add_weight(
'gt_count',
shape=[self._num_classes],
initializer='zeros',
dtype=tf.float32,
)
def get_config(self) -> Dict[str, Any]:
"""Returns the serializable config of the metric."""
return {
'num_classes': self._num_classes,
'use_masks': self._use_masks,
'iou_thresholds': self._iou_thresholds,
'confidence_thresholds': self._confidence_thresholds,
'num_confidence_bins': self._num_confidence_bins,
'mask_output_boundary': self._mask_output_boundary,
'matching_algorithm': self._matching_algorithm,
'average_precision_algorithms': self._average_precision_algorithms,
'name': self.name,
'dtype': self.dtype,
}
def reset_state(self):
"""Resets all of the metric state variables."""
self.tp_count.assign(tf.zeros_like(self.tp_count))
self.fp_count.assign(tf.zeros_like(self.fp_count))
self.gt_count.assign(tf.zeros_like(self.gt_count))
def update_state(
self, y_true: Dict[str, tf.Tensor], y_pred: Dict[str, tf.Tensor]
):
# (batch_size, num_detections, 4) in absolute coordinates.
detection_boxes = tf.cast(y_pred['detection_boxes'], tf.float32)
# (batch_size, num_detections)
detection_classes = tf.cast(y_pred['detection_classes'], tf.int32)
# (batch_size, num_detections)
detection_scores = tf.cast(y_pred['detection_scores'], tf.float32)
# (batch_size, num_gts, 4) in absolute coordinates.
gt_boxes = tf.cast(y_true['boxes'], tf.float32)
# (batch_size, num_gts)
gt_classes = tf.cast(y_true['classes'], tf.int32)
# (batch_size, num_gts)
if 'is_crowds' in y_true:
gt_is_crowd = tf.cast(y_true['is_crowds'], tf.bool)
else:
gt_is_crowd = tf.zeros_like(gt_classes, dtype=tf.bool)
image_scale = tf.tile(y_true['image_info'][:, 2:3, :], multiples=[1, 1, 2])
detection_boxes = detection_boxes / tf.cast(
image_scale, dtype=detection_boxes.dtype
)
# Step 1: Computes IoUs between the detections and the non-crowd ground
# truths and IoAs between the detections and the crowd ground truths.
if not self._use_masks:
# (batch_size, num_detections, num_gts)
detection_to_gt_ious = box_ops.bbox_overlap(detection_boxes, gt_boxes)
detection_to_gt_ioas = box_ops.bbox_intersection_over_area(
detection_boxes, gt_boxes
)
else:
# Use outer boxes to generate the masks if available.
if 'detection_outer_boxes' in y_pred:
detection_boxes = tf.cast(y_pred['detection_outer_boxes'], tf.float32)
# (batch_size, num_detections, mask_height, mask_width)
detection_masks = tf.cast(y_pred['detection_masks'], tf.float32)
# (batch_size, num_gts, gt_mask_height, gt_mask_width)
gt_masks = tf.cast(y_true['masks'], tf.float32)
num_detections = detection_boxes.get_shape()[1]
# (batch_size, num_detections + num_gts, 4)
all_boxes = _shift_and_rescale_boxes(
tf.concat([detection_boxes, gt_boxes], axis=1),
self._mask_output_boundary,
)
detection_boxes = all_boxes[:, :num_detections, :]
gt_boxes = all_boxes[:, num_detections:, :]
# (batch_size, num_detections, num_gts)
detection_to_gt_ious, detection_to_gt_ioas = (
mask_ops.instance_masks_overlap(
detection_boxes,
detection_masks,
gt_boxes,
gt_masks,
output_size=self._mask_output_boundary,
)
)
# (batch_size, num_detections, num_gts)
detection_to_gt_ious = tf.where(
gt_is_crowd[:, tf.newaxis, :], 0.0, detection_to_gt_ious
)
detection_to_crowd_ioas = tf.where(
gt_is_crowd[:, tf.newaxis, :], detection_to_gt_ioas, 0.0
)
# Step 2: counts true positives grouped by IoU thresholds, classes and
# confidence bins.
# (batch_size, num_detections, num_iou_thresholds)
detection_is_tp, _ = self._matching_algorithm(
detection_to_gt_ious, detection_classes, detection_scores, gt_classes
)
# (batch_size * num_detections,)
flattened_binned_confidence = tf.reshape(
tf.cast(detection_scores * self._num_confidence_bins, tf.int32), [-1]
)
# (batch_size * num_detections, num_confidence_bins + 1)
flattened_binned_confidence_one_hot = tf.one_hot(
flattened_binned_confidence, self._num_confidence_bins + 1, axis=1
)
# (num_iou_thresholds, num_classes, num_confidence_bins + 1)
tp_count = _count_detection_type(
detection_is_tp,
detection_classes,
flattened_binned_confidence_one_hot,
self._num_classes,
)
# Step 3: Counts false positives grouped by IoU thresholds, classes and
# confidence bins.
# False positive: detection is not true positive (see above) and not part of
# the crowd ground truth with the same class.
# (batch_size, num_detections, num_gts, num_iou_thresholds)
detection_matches_crowd = (
(detection_to_crowd_ioas[..., tf.newaxis] > self._iou_thresholds)
& (
detection_classes[:, :, tf.newaxis, tf.newaxis]
== gt_classes[:, tf.newaxis, :, tf.newaxis]
)
& (detection_classes[:, :, tf.newaxis, tf.newaxis] > 0)
)
# (batch_size, num_detections, num_iou_thresholds)
detection_matches_any_crowd = tf.reduce_any(
detection_matches_crowd & ~detection_is_tp[:, :, tf.newaxis, :], axis=2
)
detection_is_fp = ~detection_is_tp & ~detection_matches_any_crowd
# (num_iou_thresholds, num_classes, num_confidence_bins + 1)
fp_count = _count_detection_type(
detection_is_fp,
detection_classes,
flattened_binned_confidence_one_hot,
self._num_classes,
)
# Step 4: Counts non-crowd groundtruths grouped by classes.
# (num_classes, )
gt_count = tf.reduce_sum(
tf.one_hot(
tf.where(gt_is_crowd, -1, gt_classes), self._num_classes, axis=-1
),
axis=[0, 1],
)
# Clears the count of class 0 (background).
gt_count *= 1.0 - tf.eye(1, self._num_classes, dtype=gt_count.dtype)[0]
# Accumulates the variables.
self.fp_count.assign_add(tf.cast(fp_count, self.fp_count.dtype))
self.tp_count.assign_add(tf.cast(tp_count, self.tp_count.dtype))
self.gt_count.assign_add(tf.cast(gt_count, self.gt_count.dtype))
def result(self) -> Dict[str, tf.Tensor]:
"""Returns the metrics values as a dict.
Returns:
A `dict` containing:
'ap': a float tensor in shape (num_iou_thresholds, num_classes) which
stores the average precision of each class at different IoU thresholds.
'precision': a float tensor in shape (num_confidence_thresholds,
num_iou_thresholds, num_classes) which stores the precision of each
class at different confidence thresholds & IoU thresholds.
'recall': a float tensor in shape (num_confidence_thresholds,
num_iou_thresholds, num_classes) which stores the recall of each
class at different confidence thresholds & IoU thresholds.
'valid_classes': a bool tensor in shape (num_classes,). If False, there
is no instance of the class in the ground truth.
"""
result = {
# (num_classes,)
'valid_classes': self.gt_count != 0,
}
# (num_iou_thresholds, num_classes, num_confidence_bins + 1)
tp_count_cum_by_confidence = tf.math.cumsum(
self.tp_count, axis=-1, reverse=True
)
# (num_iou_thresholds, num_classes, num_confidence_bins + 1)
fp_count_cum_by_confidence = tf.math.cumsum(
self.fp_count, axis=-1, reverse=True
)
# (num_iou_thresholds, num_classes, num_confidence_bins + 1)
precisions = tf.math.divide_no_nan(
tp_count_cum_by_confidence,
tp_count_cum_by_confidence + fp_count_cum_by_confidence,
)
# (num_iou_thresholds, num_classes, num_confidence_bins + 1)
recalls = tf.math.divide_no_nan(
tp_count_cum_by_confidence, self.gt_count[..., tf.newaxis]
)
if self._confidence_thresholds:
# If confidence_thresholds is set, reports precision and recall at each
# confidence threshold.
confidence_thresholds = tf.cast(
tf.constant(self._confidence_thresholds, dtype=tf.float32)
* self._num_confidence_bins,
dtype=tf.int32,
)
# (num_confidence_thresholds, num_iou_thresholds, num_classes)
result['precisions'] = tf.gather(
tf.transpose(precisions, [2, 0, 1]), confidence_thresholds
)
result['recalls'] = tf.gather(
tf.transpose(recalls, [2, 0, 1]), confidence_thresholds
)
precisions = tf.reverse(precisions, axis=[-1])
recalls = tf.reverse(recalls, axis=[-1])
result.update(
{
# (num_iou_thresholds, num_classes)
key: ap_algorithm(precisions, recalls)
for key, ap_algorithm in self._average_precision_algorithms.items()
}
)
return result
def get_average_precision_metrics_keys(self):
"""Gets the keys of the average precision metrics in the results."""
return self._average_precision_algorithms.keys()
|