Spaces:
Runtime error
Runtime error
File size: 16,950 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Defines NeuMF model for NCF framework.
Some abbreviations used in the code base:
NeuMF: Neural Matrix Factorization
NCF: Neural Collaborative Filtering
GMF: Generalized Matrix Factorization
MLP: Multi-Layer Perceptron
GMF applies a linear kernel to model the latent feature interactions, and MLP
uses a nonlinear kernel to learn the interaction function from data. NeuMF model
is a fused model of GMF and MLP to better model the complex user-item
interactions, and unifies the strengths of linearity of MF and non-linearity of
MLP for modeling the user-item latent structures.
In NeuMF model, it allows GMF and MLP to learn separate embeddings, and combine
the two models by concatenating their last hidden layer.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf, tf_keras
from tensorflow import estimator as tf_estimator
from typing import Any, Dict, Text
from official.recommendation import constants as rconst
from official.recommendation import movielens
from official.recommendation import ncf_common
from official.recommendation import stat_utils
def sparse_to_dense_grads(grads_and_vars):
"""Convert sparse gradients to dense gradients.
All sparse gradients, which are represented as instances of tf.IndexedSlices,
are converted to dense Tensors. Dense gradients, which are represents as
Tensors, are unchanged.
The purpose of this conversion is that for small embeddings, which are used by
this model, applying dense gradients with the AdamOptimizer is faster than
applying sparse gradients.
Args
grads_and_vars: A list of (gradient, variable) tuples. Each gradient can
be a Tensor or an IndexedSlices. Tensors are unchanged, and IndexedSlices
are converted to dense Tensors.
Returns:
The same list of (gradient, variable) as `grads_and_vars`, except each
IndexedSlices gradient is converted to a Tensor.
"""
# Calling convert_to_tensor changes IndexedSlices into Tensors, and leaves
# Tensors unchanged.
return [(tf.convert_to_tensor(g), v) for g, v in grads_and_vars]
def neumf_model_fn(features, labels, mode, params):
"""Model Function for NeuMF estimator."""
if params.get("use_seed"):
tf.set_random_seed(stat_utils.random_int32())
users = features[movielens.USER_COLUMN]
items = features[movielens.ITEM_COLUMN]
user_input = tf_keras.layers.Input(tensor=users)
item_input = tf_keras.layers.Input(tensor=items)
logits = construct_model(user_input, item_input, params).output
# Softmax with the first column of zeros is equivalent to sigmoid.
softmax_logits = ncf_common.convert_to_softmax_logits(logits)
if mode == tf_estimator.ModeKeys.EVAL:
duplicate_mask = tf.cast(features[rconst.DUPLICATE_MASK], tf.float32)
return _get_estimator_spec_with_metrics(
logits,
softmax_logits,
duplicate_mask,
params["num_neg"],
params["match_mlperf"],
use_tpu_spec=params["use_tpu"])
elif mode == tf_estimator.ModeKeys.TRAIN:
labels = tf.cast(labels, tf.int32)
valid_pt_mask = features[rconst.VALID_POINT_MASK]
optimizer = tf.compat.v1.train.AdamOptimizer(
learning_rate=params["learning_rate"],
beta1=params["beta1"],
beta2=params["beta2"],
epsilon=params["epsilon"])
if params["use_tpu"]:
optimizer = tf.compat.v1.tpu.CrossShardOptimizer(optimizer)
loss = tf.compat.v1.losses.sparse_softmax_cross_entropy(
labels=labels,
logits=softmax_logits,
weights=tf.cast(valid_pt_mask, tf.float32))
tf.identity(loss, name="cross_entropy")
global_step = tf.compat.v1.train.get_global_step()
tvars = tf.compat.v1.trainable_variables()
gradients = optimizer.compute_gradients(
loss, tvars, colocate_gradients_with_ops=True)
gradients = sparse_to_dense_grads(gradients)
minimize_op = optimizer.apply_gradients(
gradients, global_step=global_step, name="train")
update_ops = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.UPDATE_OPS)
train_op = tf.group(minimize_op, update_ops)
return tf_estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)
else:
raise NotImplementedError
def _strip_first_and_last_dimension(x, batch_size):
return tf.reshape(x[0, :], (batch_size,))
def construct_model(user_input: tf.Tensor, item_input: tf.Tensor,
params: Dict[Text, Any]) -> tf_keras.Model:
"""Initialize NeuMF model.
Args:
user_input: keras input layer for users
item_input: keras input layer for items
params: Dict of hyperparameters.
Raises:
ValueError: if the first model layer is not even.
Returns:
model: a keras Model for computing the logits
"""
num_users = params["num_users"]
num_items = params["num_items"]
model_layers = params["model_layers"]
mf_regularization = params["mf_regularization"]
mlp_reg_layers = params["mlp_reg_layers"]
mf_dim = params["mf_dim"]
if model_layers[0] % 2 != 0:
raise ValueError("The first layer size should be multiple of 2!")
# Initializer for embedding layers
embedding_initializer = "glorot_uniform"
def mf_slice_fn(x):
x = tf.squeeze(x, [1])
return x[:, :mf_dim]
def mlp_slice_fn(x):
x = tf.squeeze(x, [1])
return x[:, mf_dim:]
# It turns out to be significantly more effecient to store the MF and MLP
# embedding portions in the same table, and then slice as needed.
embedding_user = tf_keras.layers.Embedding(
num_users,
mf_dim + model_layers[0] // 2,
embeddings_initializer=embedding_initializer,
embeddings_regularizer=tf_keras.regularizers.l2(mf_regularization),
input_length=1,
name="embedding_user")(
user_input)
embedding_item = tf_keras.layers.Embedding(
num_items,
mf_dim + model_layers[0] // 2,
embeddings_initializer=embedding_initializer,
embeddings_regularizer=tf_keras.regularizers.l2(mf_regularization),
input_length=1,
name="embedding_item")(
item_input)
# GMF part
mf_user_latent = tf_keras.layers.Lambda(
mf_slice_fn, name="embedding_user_mf")(
embedding_user)
mf_item_latent = tf_keras.layers.Lambda(
mf_slice_fn, name="embedding_item_mf")(
embedding_item)
# MLP part
mlp_user_latent = tf_keras.layers.Lambda(
mlp_slice_fn, name="embedding_user_mlp")(
embedding_user)
mlp_item_latent = tf_keras.layers.Lambda(
mlp_slice_fn, name="embedding_item_mlp")(
embedding_item)
# Element-wise multiply
mf_vector = tf_keras.layers.multiply([mf_user_latent, mf_item_latent])
# Concatenation of two latent features
mlp_vector = tf_keras.layers.concatenate([mlp_user_latent, mlp_item_latent])
num_layer = len(model_layers) # Number of layers in the MLP
for layer in xrange(1, num_layer):
model_layer = tf_keras.layers.Dense(
model_layers[layer],
kernel_regularizer=tf_keras.regularizers.l2(mlp_reg_layers[layer]),
activation="relu")
mlp_vector = model_layer(mlp_vector)
# Concatenate GMF and MLP parts
predict_vector = tf_keras.layers.concatenate([mf_vector, mlp_vector])
# Final prediction layer
logits = tf_keras.layers.Dense(
1,
activation=None,
kernel_initializer="lecun_uniform",
name=movielens.RATING_COLUMN)(
predict_vector)
# Print model topology.
model = tf_keras.models.Model([user_input, item_input], logits)
model.summary()
sys.stdout.flush()
return model
def _get_estimator_spec_with_metrics(logits: tf.Tensor,
softmax_logits: tf.Tensor,
duplicate_mask: tf.Tensor,
num_training_neg: int,
match_mlperf: bool = False,
use_tpu_spec: bool = False):
"""Returns a EstimatorSpec that includes the metrics."""
cross_entropy, \
metric_fn, \
in_top_k, \
ndcg, \
metric_weights = compute_eval_loss_and_metrics_helper(
logits,
softmax_logits,
duplicate_mask,
num_training_neg,
match_mlperf)
if use_tpu_spec:
return tf_estimator.tpu.TPUEstimatorSpec(
mode=tf_estimator.ModeKeys.EVAL,
loss=cross_entropy,
eval_metrics=(metric_fn, [in_top_k, ndcg, metric_weights]))
return tf_estimator.EstimatorSpec(
mode=tf_estimator.ModeKeys.EVAL,
loss=cross_entropy,
eval_metric_ops=metric_fn(in_top_k, ndcg, metric_weights))
def compute_eval_loss_and_metrics_helper(logits: tf.Tensor,
softmax_logits: tf.Tensor,
duplicate_mask: tf.Tensor,
num_training_neg: int,
match_mlperf: bool = False):
"""Model evaluation with HR and NDCG metrics.
The evaluation protocol is to rank the test interacted item (truth items)
among the randomly chosen 999 items that are not interacted by the user.
The performance of the ranked list is judged by Hit Ratio (HR) and Normalized
Discounted Cumulative Gain (NDCG).
For evaluation, the ranked list is truncated at 10 for both metrics. As such,
the HR intuitively measures whether the test item is present on the top-10
list, and the NDCG accounts for the position of the hit by assigning higher
scores to hits at top ranks. Both metrics are calculated for each test user,
and the average scores are reported.
If `match_mlperf` is True, then the HR and NDCG computations are done in a
slightly unusual way to match the MLPerf reference implementation.
Specifically, if the evaluation negatives contain duplicate items, it will be
treated as if the item only appeared once. Effectively, for duplicate items in
a row, the predicted score for all but one of the items will be set to
-infinity
For example, suppose we have that following inputs:
logits_by_user: [[ 2, 3, 3],
[ 5, 4, 4]]
items_by_user: [[10, 20, 20],
[30, 40, 40]]
# Note: items_by_user is not explicitly present. Instead the relevant \
information is contained within `duplicate_mask`
top_k: 2
Then with match_mlperf=True, the HR would be 2/2 = 1.0. With
match_mlperf=False, the HR would be 1/2 = 0.5. This is because each user has
predicted scores for only 2 unique items: 10 and 20 for the first user, and 30
and 40 for the second. Therefore, with match_mlperf=True, it's guaranteed the
first item's score is in the top 2. With match_mlperf=False, this function
would compute the first user's first item is not in the top 2, because item 20
has a higher score, and item 20 occurs twice.
Args:
logits: A tensor containing the predicted logits for each user. The shape of
logits is (num_users_per_batch * (1 + NUM_EVAL_NEGATIVES),) Logits for a
user are grouped, and the last element of the group is the true element.
softmax_logits: The same tensor, but with zeros left-appended.
duplicate_mask: A vector with the same shape as logits, with a value of 1 if
the item corresponding to the logit at that position has already appeared
for that user.
num_training_neg: The number of negatives per positive during training.
match_mlperf: Use the MLPerf reference convention for computing rank.
Returns:
cross_entropy: the loss
metric_fn: the metrics function
in_top_k: hit rate metric
ndcg: ndcg metric
metric_weights: metric weights
"""
in_top_k, ndcg, metric_weights, logits_by_user = compute_top_k_and_ndcg(
logits, duplicate_mask, match_mlperf)
# Examples are provided by the eval Dataset in a structured format, so eval
# labels can be reconstructed on the fly.
eval_labels = tf.reshape(
shape=(-1,),
tensor=tf.one_hot(
tf.zeros(shape=(logits_by_user.shape[0],), dtype=tf.int32) +
rconst.NUM_EVAL_NEGATIVES,
logits_by_user.shape[1],
dtype=tf.int32))
eval_labels_float = tf.cast(eval_labels, tf.float32)
# During evaluation, the ratio of negatives to positives is much higher
# than during training. (Typically 999 to 1 vs. 4 to 1) By adjusting the
# weights for the negative examples we compute a loss which is consistent with
# the training data. (And provides apples-to-apples comparison)
negative_scale_factor = num_training_neg / rconst.NUM_EVAL_NEGATIVES
example_weights = ((eval_labels_float +
(1 - eval_labels_float) * negative_scale_factor) *
(1 + rconst.NUM_EVAL_NEGATIVES) / (1 + num_training_neg))
# Tile metric weights back to logit dimensions
expanded_metric_weights = tf.reshape(
tf.tile(metric_weights[:, tf.newaxis],
(1, rconst.NUM_EVAL_NEGATIVES + 1)), (-1,))
# ignore padded examples
example_weights *= tf.cast(expanded_metric_weights, tf.float32)
cross_entropy = tf.compat.v1.losses.sparse_softmax_cross_entropy(
logits=softmax_logits, labels=eval_labels, weights=example_weights)
def metric_fn(top_k_tensor, ndcg_tensor, weight_tensor):
return {
rconst.HR_KEY:
tf.compat.v1.metrics.mean(
top_k_tensor, weights=weight_tensor,
name=rconst.HR_METRIC_NAME),
rconst.NDCG_KEY:
tf.compat.v1.metrics.mean(
ndcg_tensor,
weights=weight_tensor,
name=rconst.NDCG_METRIC_NAME)
}
return cross_entropy, metric_fn, in_top_k, ndcg, metric_weights
def compute_top_k_and_ndcg(logits: tf.Tensor,
duplicate_mask: tf.Tensor,
match_mlperf: bool = False):
"""Compute inputs of metric calculation.
Args:
logits: A tensor containing the predicted logits for each user. The shape of
logits is (num_users_per_batch * (1 + NUM_EVAL_NEGATIVES),) Logits for a
user are grouped, and the first element of the group is the true element.
duplicate_mask: A vector with the same shape as logits, with a value of 1 if
the item corresponding to the logit at that position has already appeared
for that user.
match_mlperf: Use the MLPerf reference convention for computing rank.
Returns:
is_top_k, ndcg and weights, all of which has size (num_users_in_batch,), and
logits_by_user which has size
(num_users_in_batch, (rconst.NUM_EVAL_NEGATIVES + 1)).
"""
logits_by_user = tf.reshape(logits, (-1, rconst.NUM_EVAL_NEGATIVES + 1))
duplicate_mask_by_user = tf.cast(
tf.reshape(duplicate_mask, (-1, rconst.NUM_EVAL_NEGATIVES + 1)),
logits_by_user.dtype)
if match_mlperf:
# Set duplicate logits to the min value for that dtype. The MLPerf
# reference dedupes during evaluation.
logits_by_user *= (1 - duplicate_mask_by_user)
logits_by_user += duplicate_mask_by_user * logits_by_user.dtype.min
# Determine the location of the first element in each row after the elements
# are sorted.
sort_indices = tf.argsort(logits_by_user, axis=1, direction="DESCENDING")
# Use matrix multiplication to extract the position of the true item from the
# tensor of sorted indices. This approach is chosen because both GPUs and TPUs
# perform matrix multiplications very quickly. This is similar to np.argwhere.
# However this is a special case because the target will only appear in
# sort_indices once.
one_hot_position = tf.cast(
tf.equal(sort_indices, rconst.NUM_EVAL_NEGATIVES), tf.int32)
sparse_positions = tf.multiply(
one_hot_position,
tf.range(logits_by_user.shape[1])[tf.newaxis, :])
position_vector = tf.reduce_sum(sparse_positions, axis=1)
in_top_k = tf.cast(tf.less(position_vector, rconst.TOP_K), tf.float32)
ndcg = tf.math.log(2.) / tf.math.log(tf.cast(position_vector, tf.float32) + 2)
ndcg *= in_top_k
# If a row is a padded row, all but the first element will be a duplicate.
metric_weights = tf.not_equal(
tf.reduce_sum(duplicate_mask_by_user, axis=1), rconst.NUM_EVAL_NEGATIVES)
return in_top_k, ndcg, metric_weights, logits_by_user
|