File size: 5,377 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tests for treatment_fraction."""

from absl.testing import parameterized
import numpy as np
import tensorflow as tf, tf_keras
from official.recommendation.uplift import keras_test_case
from official.recommendation.uplift import types
from official.recommendation.uplift.metrics import treatment_fraction


class TreatmentFractionTest(
    keras_test_case.KerasTestCase, parameterized.TestCase
):

  def _get_y_pred(
      self, is_treatment: tf.Tensor
  ) -> types.TwoTowerTrainingOutputs:
    # Only the is_treatment tensor is required for testing.
    return types.TwoTowerTrainingOutputs(
        shared_embedding=tf.ones_like(is_treatment),
        control_predictions=tf.ones_like(is_treatment),
        treatment_predictions=tf.ones_like(is_treatment),
        uplift=tf.ones_like(is_treatment),
        control_logits=tf.ones_like(is_treatment),
        treatment_logits=tf.ones_like(is_treatment),
        true_logits=tf.ones_like(is_treatment),
        is_treatment=is_treatment,
    )

  @parameterized.named_parameters(
      {
          "testcase_name": "unweighted",
          "is_treatment": tf.constant([[True], [False], [True], [False]]),
          "sample_weight": None,
          "expected_result": 0.5,
      },
      {
          "testcase_name": "weighted",
          "is_treatment": tf.constant(
              [[True], [False], [True], [True], [False]]
          ),
          "sample_weight": tf.constant([0.5, 0.5, 0, 0.7, 1.8]),
          "expected_result": np.average(
              [1, 0, 1, 1, 0], weights=[0.5, 0.5, 0, 0.7, 1.8]
          ),
      },
      {
          "testcase_name": "only_control",
          "is_treatment": tf.constant([[False], [False], [False]]),
          "sample_weight": tf.constant([1, 0, 1]),
          "expected_result": 0.0,
      },
      {
          "testcase_name": "only_treatment",
          "is_treatment": tf.constant([[True], [True], [True]]),
          "sample_weight": tf.constant([0, 1, 1]),
          "expected_result": 1.0,
      },
      {
          "testcase_name": "one_entry",
          "is_treatment": tf.constant([True]),
          "sample_weight": None,
          "expected_result": 1.0,
      },
      {
          "testcase_name": "no_entry",
          "is_treatment": tf.constant([], dtype=tf.bool),
          "sample_weight": tf.constant([]),
          "expected_result": 0.0,
      },
  )
  def test_treatment_fraction_computes_weighted_mean_of_is_treatment_tensor(
      self, is_treatment, sample_weight, expected_result
  ):
    metric = treatment_fraction.TreatmentFraction()
    y_true = tf.zeros_like(is_treatment)
    y_pred = self._get_y_pred(is_treatment)
    metric.update_state(
        y_true=y_true, y_pred=y_pred, sample_weight=sample_weight
    )
    self.assertEqual(expected_result, metric.result())

  def test_multiple_update_batches_returns_aggregated_treatment_fractions(self):
    metric = treatment_fraction.TreatmentFraction()

    metric.update_state(
        y_true=tf.zeros(3),
        y_pred=self._get_y_pred(tf.constant([[True], [True], [True]])),
        sample_weight=None,
    )
    metric.update_state(
        y_true=tf.zeros(3),
        y_pred=self._get_y_pred(tf.constant([[False], [False], [False]])),
        sample_weight=None,
    )
    metric.update_state(
        y_true=tf.zeros(3),
        y_pred=self._get_y_pred(tf.constant([[True], [False], [True]])),
        sample_weight=tf.constant([0.3, 0.25, 0.7]),
    )

    expected_treatment_fraction = np.average(
        [1, 1, 1, 0, 0, 0, 1, 0, 1], weights=[1, 1, 1, 1, 1, 1, 0.3, 0.25, 0.7]
    )
    self.assertEqual(expected_treatment_fraction, metric.result())

  def test_initial_and_reset_state_return_zero_treatment_fraction(self):
    metric = treatment_fraction.TreatmentFraction()
    self.assertEqual(0.0, metric.result())

    metric(
        y_true=tf.zeros(3),
        y_pred=self._get_y_pred(tf.constant([[True], [False], [True]])),
    )
    self.assertEqual(2 / 3, metric.result())

    metric.reset_states()
    self.assertEqual(0.0, metric.result())

  def test_metric_config_is_serializable(self):
    metric = treatment_fraction.TreatmentFraction(
        name="test_name", dtype=tf.float16
    )
    y_pred = self._get_y_pred(
        is_treatment=tf.constant([[True], [False], [True], [False]]),
    )
    self.assertLayerConfigurable(
        layer=metric, y_true=tf.zeros(4), y_pred=y_pred, serializable=True
    )

  def test_invalid_prediction_tensor_type_raises_type_error(self):
    metric = treatment_fraction.TreatmentFraction()

    with self.assertRaisesRegex(
        TypeError, "y_pred must be of type `TwoTowerTrainingOutputs`"
    ):
      metric.update_state(y_true=tf.ones((3, 1)), y_pred=tf.ones((3, 1)))


if __name__ == "__main__":
  tf.test.main()