File size: 20,494 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Builder class for preparing tf.train.Example in vision tasks."""

# https://www.python.org/dev/peps/pep-0563/#enabling-the-future-behavior-in-python-3-7
from __future__ import annotations

import hashlib
from typing import Optional, Sequence, Union
import numpy as np

from official.core import tf_example_builder
from official.vision.data import image_utils
from official.vision.data import tf_example_feature_key

BytesValueType = Union[bytes, Sequence[bytes], str, Sequence[str]]

_to_array = lambda v: [v] if not isinstance(v, (list, np.ndarray)) else v
_to_bytes = lambda v: v.encode() if isinstance(v, str) else v
_to_bytes_array = lambda v: list(map(_to_bytes, _to_array(v)))


class TfExampleBuilder(tf_example_builder.TfExampleBuilder):
  """Builder class for preparing tf.train.Example in vision task.

  Read API doc at https://www.tensorflow.org/api_docs/python/tf/train/Example.
  """

  def add_image_matrix_feature(
      self,
      image_matrix: np.ndarray,
      image_format: str = 'PNG',
      image_source_id: Optional[bytes] = None,
      feature_prefix: Optional[str] = None,
      label: Optional[Union[int, Sequence[int]]] = None) -> 'TfExampleBuilder':
    """Encodes and adds image features to the example.

    See `tf_example_feature_key.EncodedImageFeatureKey` for list of feature keys
    that will be added to the example.

    Example usages:
      >>> example_builder = TfExampleBuilder()
      * For adding RGB image feature with PNG encoding:
      >>> example_builder.add_image_matrix_feature(image_matrix)
      * For adding RGB image feature with a pre-generated source ID.
      >>> example_builder.add_image_matrix_feature(
              image_matrix, image_source_id=image_source_id)
      * For adding single-channel depth image feature with JPEG encoding:
      >>> example_builder.add_image_matrix_feature(
              image_matrix, image_format=ImageFormat.JPEG,
              feature_prefix='depth')

    Args:
      image_matrix: Numpy image matrix with shape (height, width, channels)
      image_format: Image format string, defaults to 'PNG'.
      image_source_id: Unique string ID to identify the image. Hashed image will
        be used if the field is not provided.
      feature_prefix: Feature prefix for image features.
      label: the label or a list of labels for the image.

    Returns:
      The builder object for subsequent method calls.
    """
    encoded_image = image_utils.encode_image(image_matrix, image_format)
    height, width, num_channels = image_matrix.shape

    return self.add_encoded_image_feature(encoded_image, image_format, height,
                                          width, num_channels, image_source_id,
                                          feature_prefix, label)

  def add_encoded_image_feature(
      self,
      encoded_image: bytes,
      image_format: Optional[str] = None,
      height: Optional[int] = None,
      width: Optional[int] = None,
      num_channels: Optional[int] = None,
      image_source_id: Optional[bytes] = None,
      feature_prefix: Optional[str] = None,
      label: Optional[Union[int, Sequence[int]]] = None) -> 'TfExampleBuilder':
    """Adds encoded image features to the example.

    See `tf_example_feature_key.EncodedImageFeatureKey` for list of feature keys
    that will be added to the example.

    Image format, height, width, and channels are inferred from the encoded
    image bytes if any of them is not provided. Hashed image will be used if
    pre-generated source ID is not provided.

    Example usages:
      >>> example_builder = TfExampleBuilder()
      * For adding RGB image feature:
      >>> example_builder.add_encoded_image_feature(image_bytes)
      * For adding RGB image feature with pre-generated source ID:
      >>> example_builder.add_encoded_image_feature(
              image_bytes, image_source_id=image_source_id)
      * For adding single-channel depth image feature:
      >>> example_builder.add_encoded_image_feature(
              image_bytes, feature_prefix='depth')

    Args:
      encoded_image: Encoded image string.
      image_format: Image format string.
      height: Number of rows.
      width: Number of columns.
      num_channels: Number of channels.
      image_source_id: Unique string ID to identify the image.
      feature_prefix: Feature prefix for image features.
      label: the label or a list of labels for the image.

    Returns:
      The builder object for subsequent method calls.
    """
    if image_format == 'RAW':
      if not (height and width and num_channels):
        raise ValueError('For raw image feature, height, width and '
                         'num_channels fields are required.')
    if not all((height, width, num_channels, image_format)):
      (height, width, num_channels, image_format) = (
          image_utils.decode_image_metadata(encoded_image))
    else:
      image_format = image_utils.validate_image_format(image_format)

    feature_key = tf_example_feature_key.EncodedImageFeatureKey(feature_prefix)

    # If source ID is not provided, we use hashed encoded image as the source
    # ID. Note that we only keep 24 bits to be consistent with the Model Garden
    # requirement, which will transform the source ID into float32.
    if not image_source_id:
      hashed_image = int(hashlib.blake2s(encoded_image).hexdigest(), 16)
      image_source_id = _to_bytes(str(hashed_image % ((1 << 24) + 1)))

    if label is not None:
      self.add_ints_feature(feature_key.label, label)

    return (
        self.add_bytes_feature(feature_key.encoded, encoded_image)
        .add_bytes_feature(feature_key.format, image_format)
        .add_ints_feature(feature_key.height, [height])
        .add_ints_feature(feature_key.width, [width])
        .add_ints_feature(feature_key.num_channels, num_channels)
        .add_bytes_feature(feature_key.source_id, image_source_id))

  def add_boxes_feature(
      self,
      xmins: Sequence[float],
      xmaxs: Sequence[float],
      ymins: Sequence[float],
      ymaxs: Sequence[float],
      labels: Sequence[int],
      confidences: Optional[Sequence[float]] = None,
      normalized: bool = True,
      feature_prefix: Optional[str] = None) -> 'TfExampleBuilder':
    """Adds box and label features to the example.

    Four features will be generated for xmin, ymin, xmax, and ymax. One feature
    will be generated for label. Different feature keys will be used for
    normalized boxes and pixel-value boxes, depending on the value of
    `normalized`.

    Example usages:
      >>> example_builder = TfExampleBuilder()
      >>> example_builder.add_boxes_feature(xmins, xmaxs, ymins, ymaxs, labels)

    Args:
      xmins: A list of minimum X coordinates.
      xmaxs: A list of maximum X coordinates.
      ymins: A list of minimum Y coordinates.
      ymaxs: A list of maximum Y coordinates.
      labels: The labels of added boxes.
      confidences: The confidences of added boxes.
      normalized: Indicate if the coordinates of boxes are normalized.
      feature_prefix: Feature prefix for added box features.

    Returns:
      The builder object for subsequent method calls.
    """
    if normalized:
      feature_key = tf_example_feature_key.BoxFeatureKey(feature_prefix)
    else:
      feature_key = tf_example_feature_key.BoxPixelFeatureKey(feature_prefix)

    self.add_floats_feature(feature_key.xmin, xmins)
    self.add_floats_feature(feature_key.xmax, xmaxs)
    self.add_floats_feature(feature_key.ymin, ymins)
    self.add_floats_feature(feature_key.ymax, ymaxs)
    self.add_ints_feature(feature_key.label, labels)
    if confidences is not None:
      self.add_floats_feature(feature_key.confidence, confidences)
    return self

  def _compute_mask_areas(
      self, instance_mask_matrices: np.ndarray) -> Sequence[float]:
    return np.sum(
        instance_mask_matrices, axis=(1, 2, 3),
        dtype=float).flatten().tolist()

  def add_instance_mask_matrices_feature(
      self,
      instance_mask_matrices: np.ndarray,
      feature_prefix: Optional[str] = None) -> 'TfExampleBuilder':
    """Encodes and adds instance mask features to the example.

    See `tf_example_feature_key.EncodedInstanceMaskFeatureKey` for list of
    feature keys that will be added to the example. Please note that all masks
    will be encoded as PNG images.

    Example usages:
      >>> example_builder = TfExampleBuilder()
      >>> example_builder.add_instance_mask_matrices_feature(
              instance_mask_matrices)

    TODO(b/223653024): Provide a way to generate visualization mask from
    feature mask.

    Args:
      instance_mask_matrices: Numpy instance mask matrices with shape
        (num_instance, height, width, 1) or (num_instance, height, width).
      feature_prefix: Feature prefix for instance mask features.

    Returns:
      The builder object for subsequent method calls.
    """
    if len(instance_mask_matrices.shape) == 3:
      instance_mask_matrices = instance_mask_matrices[..., np.newaxis]

    mask_areas = self._compute_mask_areas(instance_mask_matrices)
    encoded_instance_masks = list(
        map(lambda x: image_utils.encode_image(x, 'PNG'),
            instance_mask_matrices))

    return self.add_encoded_instance_masks_feature(encoded_instance_masks,
                                                   mask_areas, feature_prefix)

  def add_encoded_instance_masks_feature(
      self,
      encoded_instance_masks: Sequence[bytes],
      mask_areas: Optional[Sequence[float]] = None,
      feature_prefix: Optional[str] = None) -> 'TfExampleBuilder':
    """Adds encoded instance mask features to the example.

    See `tf_example_feature_key.EncodedInstanceMaskFeatureKey` for list of
    feature keys that will be added to the example.

    Image area is inferred from the encoded instance mask bytes if not provided.

    Example usages:
      >>> example_builder = TfExampleBuilder()
      >>> example_builder.add_encoded_instance_masks_feature(
              instance_mask_bytes)

    TODO(b/223653024): Provide a way to generate visualization mask from
    feature mask.

    Args:
      encoded_instance_masks: A list of encoded instance mask string. Note that
        the encoding is not changed in this function and it always assumes the
        image is in "PNG" format.
      mask_areas: Areas for each instance masks.
      feature_prefix: Feature prefix for instance mask features.

    Returns:
      The builder object for subsequent method calls.
    """
    encoded_instance_masks = _to_bytes_array(encoded_instance_masks)

    if mask_areas is None:
      instance_mask_matrices = np.array(
          list(map(image_utils.decode_image, encoded_instance_masks)))
      mask_areas = self._compute_mask_areas(instance_mask_matrices)

    feature_key = tf_example_feature_key.EncodedInstanceMaskFeatureKey(
        feature_prefix)
    return (
        self.add_bytes_feature(feature_key.mask, encoded_instance_masks)
        .add_floats_feature(feature_key.area, mask_areas))

  def add_semantic_mask_matrix_feature(
      self,
      mask_matrix: np.ndarray,
      mask_format: str = 'PNG',
      visualization_mask_matrix: Optional[np.ndarray] = None,
      visualization_mask_format: str = 'PNG',
      feature_prefix: Optional[str] = None) -> 'TfExampleBuilder':
    """Encodes and adds semantic mask features to the example.

    See `tf_example_feature_key.EncodedSemanticMaskFeatureKey` for list of
    feature keys that will be added to the example.

    Example usages:
      >>> example_builder = TfExampleBuilder()
      * For adding semantic mask feature:
      >>> example_builder.add_semantic_mask_matrix_feature(
              semantic_mask_matrix)
      * For adding semantic mask feature and visualization mask feature:
      >>> example_builder.add_semantic_mask_matrix_feature(
              semantic_mask_matrix,
              visualization_mask_matrix=visualization_mask_matrix)
      * For adding predicted semantic mask feature with visualization mask:
      >>> example_builder.add_encoded_semantic_mask_feature(
              predicted_mask_matrix,
              visualization_mask_matrix=predicted_visualization_mask_matrix,
              feature_prefix='predicted')

    TODO(b/223653024): Provide a way to generate visualization mask from
    feature mask.

    Args:
      mask_matrix: Numpy semantic mask matrix with shape (height, width, 1) or
        (height, width).
      mask_format: Mask format string, defaults to 'PNG'.
      visualization_mask_matrix: Numpy visualization mask matrix for semantic
        mask with shape (height, width, 3).
      visualization_mask_format: Visualization mask format string, defaults to
        'PNG'.
      feature_prefix: Feature prefix for semantic mask features.

    Returns:
      The builder object for subsequent method calls.
    """
    if len(mask_matrix.shape) == 2:
      mask_matrix = mask_matrix[..., np.newaxis]
    encoded_mask = image_utils.encode_image(mask_matrix, mask_format)

    encoded_visualization_mask = None
    if visualization_mask_matrix is not None:
      encoded_visualization_mask = image_utils.encode_image(
          visualization_mask_matrix, visualization_mask_format)

    return self.add_encoded_semantic_mask_feature(encoded_mask, mask_format,
                                                  encoded_visualization_mask,
                                                  visualization_mask_format,
                                                  feature_prefix)

  def add_encoded_semantic_mask_feature(
      self, encoded_mask: bytes,
      mask_format: str = 'PNG',
      encoded_visualization_mask: Optional[bytes] = None,
      visualization_mask_format: str = 'PNG',
      feature_prefix: Optional[str] = None) -> 'TfExampleBuilder':
    """Adds encoded semantic mask features to the example.

    See `tf_example_feature_key.EncodedSemanticMaskFeatureKey` for list of
    feature keys that will be added to the example.

    Example usages:
      >>> example_builder = TfExampleBuilder()
      * For adding semantic mask feature:
      >>> example_builder.add_encoded_semantic_mask_feature(semantic_mask_bytes)
      * For adding semantic mask feature and visualization mask feature:
      >>> example_builder.add_encoded_semantic_mask_feature(
              semantic_mask_bytes,
              encoded_visualization_mask=visualization_mask_bytes)
      * For adding predicted semantic mask feature with visualization mask:
      >>> example_builder.add_encoded_semantic_mask_feature(
              predicted_mask_bytes,
              encoded_visualization_mask=predicted_visualization_mask_bytes,
              feature_prefix='predicted')

    TODO(b/223653024): Provide a way to generate visualization mask from
    feature mask.

    Args:
      encoded_mask: Encoded semantic mask string.
      mask_format: Semantic mask format string, defaults to 'PNG'.
      encoded_visualization_mask: Encoded visualization mask string.
      visualization_mask_format: Visualization mask format string, defaults to
        'PNG'.
      feature_prefix: Feature prefix for semantic mask features.

    Returns:
      The builder object for subsequent method calls.
    """
    feature_key = tf_example_feature_key.EncodedSemanticMaskFeatureKey(
        feature_prefix)
    example_builder = (
        self.add_bytes_feature(feature_key.mask, encoded_mask)
        .add_bytes_feature(feature_key.mask_format, mask_format))
    if encoded_visualization_mask is not None:
      example_builder = (
          example_builder.add_bytes_feature(
              feature_key.visualization_mask, encoded_visualization_mask)
          .add_bytes_feature(
              feature_key.visualization_mask_format, visualization_mask_format))
    return example_builder

  def add_panoptic_mask_matrix_feature(
      self,
      panoptic_category_mask_matrix: np.ndarray,
      panoptic_instance_mask_matrix: np.ndarray,
      panoptic_category_mask_format: str = 'PNG',
      panoptic_instance_mask_format: str = 'PNG',
      feature_prefix: Optional[str] = None) -> 'TfExampleBuilder':
    """Encodes and adds panoptic mask features to the example.

    See `tf_example_feature_key.EncodedPanopticMaskFeatureKey` for list of
    feature keys that will be added to the example.

    Example usages:
      >>> example_builder = TfExampleBuilder()
      >>> example_builder.add_panoptic_mask_matrix_feature(
              panoptic_category_mask_matrix, panoptic_instance_mask_matrix)

    TODO(b/223653024): Provide a way to generate visualization mask from
    feature mask.

    Args:
      panoptic_category_mask_matrix: Numpy panoptic category mask matrix with
        shape (height, width, 1) or (height, width).
      panoptic_instance_mask_matrix: Numpy panoptic instance mask matrix with
        shape (height, width, 1) or (height, width).
      panoptic_category_mask_format: Panoptic category mask format string,
        defaults to 'PNG'.
      panoptic_instance_mask_format: Panoptic instance mask format string,
        defaults to 'PNG'.
      feature_prefix: Feature prefix for panoptic mask features.

    Returns:
      The builder object for subsequent method calls.
    """
    if len(panoptic_category_mask_matrix.shape) == 2:
      panoptic_category_mask_matrix = (
          panoptic_category_mask_matrix[..., np.newaxis])
    if len(panoptic_instance_mask_matrix.shape) == 2:
      panoptic_instance_mask_matrix = (
          panoptic_instance_mask_matrix[..., np.newaxis])
    encoded_panoptic_category_mask = image_utils.encode_image(
        panoptic_category_mask_matrix, panoptic_category_mask_format)
    encoded_panoptic_instance_mask = image_utils.encode_image(
        panoptic_instance_mask_matrix, panoptic_instance_mask_format)

    return self.add_encoded_panoptic_mask_feature(
        encoded_panoptic_category_mask, encoded_panoptic_instance_mask,
        panoptic_category_mask_format, panoptic_instance_mask_format,
        feature_prefix)

  def add_encoded_panoptic_mask_feature(
      self,
      encoded_panoptic_category_mask: bytes,
      encoded_panoptic_instance_mask: bytes,
      panoptic_category_mask_format: str = 'PNG',
      panoptic_instance_mask_format: str = 'PNG',
      feature_prefix: Optional[str] = None) -> 'TfExampleBuilder':
    """Adds encoded panoptic mask features to the example.

    See `tf_example_feature_key.EncodedPanopticMaskFeatureKey` for list of
    feature keys that will be added to the example.

    Example usages:
      >>> example_builder = TfExampleBuilder()
      >>> example_builder.add_encoded_panoptic_mask_feature(
              encoded_panoptic_category_mask, encoded_panoptic_instance_mask)

    TODO(b/223653024): Provide a way to generate visualization mask from
    feature mask.

    Args:
      encoded_panoptic_category_mask: Encoded panoptic category mask string.
      encoded_panoptic_instance_mask: Encoded panoptic instance mask string.
      panoptic_category_mask_format: Panoptic category mask format string,
        defaults to 'PNG'.
      panoptic_instance_mask_format: Panoptic instance mask format string,
        defaults to 'PNG'.
      feature_prefix: Feature prefix for panoptic mask features.

    Returns:
      The builder object for subsequent method calls.
    """
    feature_key = tf_example_feature_key.EncodedPanopticMaskFeatureKey(
        feature_prefix)
    return (
        self.add_bytes_feature(
            feature_key.category_mask, encoded_panoptic_category_mask)
        .add_bytes_feature(
            feature_key.category_mask_format, panoptic_category_mask_format)
        .add_bytes_feature(
            feature_key.instance_mask, encoded_panoptic_instance_mask)
        .add_bytes_feature(
            feature_key.instance_mask_format, panoptic_instance_mask_format))