File size: 6,326 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Helper functions for creating TFRecord datasets."""

import hashlib
import io
import itertools

from absl import logging
import numpy as np
from PIL import Image
import tensorflow as tf, tf_keras

import multiprocessing as mp


LOG_EVERY = 100


def convert_to_feature(value, value_type=None):
  """Converts the given python object to a tf.train.Feature.

  Args:
    value: int, float, bytes or a list of them.
    value_type: optional, if specified, forces the feature to be of the given
      type. Otherwise, type is inferred automatically. Can be one of
      ['bytes', 'int64', 'float', 'bytes_list', 'int64_list', 'float_list']

  Returns:
    feature: A tf.train.Feature object.
  """

  if value_type is None:

    element = value[0] if isinstance(value, list) else value

    if isinstance(element, bytes):
      value_type = 'bytes'

    elif isinstance(element, (int, np.integer)):
      value_type = 'int64'

    elif isinstance(element, (float, np.floating)):
      value_type = 'float'

    else:
      raise ValueError('Cannot convert type {} to feature'.
                       format(type(element)))

    if isinstance(value, list):
      value_type = value_type + '_list'

  if value_type == 'int64':
    return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))

  elif value_type == 'int64_list':
    value = np.asarray(value).astype(np.int64).reshape(-1)
    return tf.train.Feature(int64_list=tf.train.Int64List(value=value))

  elif value_type == 'float':
    return tf.train.Feature(float_list=tf.train.FloatList(value=[value]))

  elif value_type == 'float_list':
    value = np.asarray(value).astype(np.float32).reshape(-1)
    return tf.train.Feature(float_list=tf.train.FloatList(value=value))

  elif value_type == 'bytes':
    return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))

  elif value_type == 'bytes_list':
    return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))

  else:
    raise ValueError('Unknown value_type parameter - {}'.format(value_type))


def image_info_to_feature_dict(height, width, filename, image_id,
                               encoded_str, encoded_format):
  """Convert image information to a dict of features."""

  key = hashlib.sha256(encoded_str).hexdigest()

  return {
      'image/height': convert_to_feature(height),
      'image/width': convert_to_feature(width),
      'image/filename': convert_to_feature(filename.encode('utf8')),
      'image/source_id': convert_to_feature(str(image_id).encode('utf8')),
      'image/key/sha256': convert_to_feature(key.encode('utf8')),
      'image/encoded': convert_to_feature(encoded_str),
      'image/format': convert_to_feature(encoded_format.encode('utf8')),
  }


def read_image(image_path):
  pil_image = Image.open(image_path)
  return np.asarray(pil_image)


def encode_mask_as_png(mask):
  pil_image = Image.fromarray(mask)
  output_io = io.BytesIO()
  pil_image.save(output_io, format='PNG')
  return output_io.getvalue()


def write_tf_record_dataset(output_path, annotation_iterator,
                            process_func, num_shards,
                            multiple_processes=None, unpack_arguments=True):
  """Iterates over annotations, processes them and writes into TFRecords.

  Args:
    output_path: The prefix path to create TF record files.
    annotation_iterator: An iterator of tuples containing details about the
      dataset.
    process_func: A function which takes the elements from the tuples of
      annotation_iterator as arguments and returns a tuple of (tf.train.Example,
      int). The integer indicates the number of annotations that were skipped.
    num_shards: int, the number of shards to write for the dataset.
    multiple_processes: integer, the number of multiple parallel processes to
      use.  If None, uses multi-processing with number of processes equal to
      `os.cpu_count()`, which is Python's default behavior. If set to 0,
      multi-processing is disabled.
      Whether or not to use multiple processes to write TF Records.
    unpack_arguments:
      Whether to unpack the tuples from annotation_iterator as individual
        arguments to the process func or to pass the returned value as it is.

  Returns:
    num_skipped: The total number of skipped annotations.
  """

  writers = [
      tf.io.TFRecordWriter(
          output_path + '-%05d-of-%05d.tfrecord' % (i, num_shards))
      for i in range(num_shards)
  ]

  total_num_annotations_skipped = 0

  if multiple_processes is None or multiple_processes > 0:
    pool = mp.Pool(
        processes=multiple_processes)
    if unpack_arguments:
      tf_example_iterator = pool.starmap(process_func, annotation_iterator)
    else:
      tf_example_iterator = pool.imap(process_func, annotation_iterator)
  else:
    if unpack_arguments:
      tf_example_iterator = itertools.starmap(process_func, annotation_iterator)
    else:
      tf_example_iterator = map(process_func, annotation_iterator)

  for idx, (tf_example, num_annotations_skipped) in enumerate(
      tf_example_iterator):
    if idx % LOG_EVERY == 0:
      logging.info('On image %d', idx)

    total_num_annotations_skipped += num_annotations_skipped
    writers[idx % num_shards].write(tf_example.SerializeToString())

  if multiple_processes is None or multiple_processes > 0:
    pool.close()
    pool.join()

  for writer in writers:
    writer.close()

  logging.info('Finished writing, skipped %d annotations.',
               total_num_annotations_skipped)
  return total_num_annotations_skipped


def check_and_make_dir(directory):
  """Creates the directory if it doesn't exist."""
  if not tf.io.gfile.isdir(directory):
    tf.io.gfile.makedirs(directory)