Spaces:
Runtime error
Runtime error
File size: 12,698 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utility functions to create tf.Example and tf.SequnceExample for test.
Example:video classification end-to-end test
i.e. from reading input file to train and eval.
```python
class FooTrainTest(tf.test.TestCase):
def setUp(self):
super(TrainTest, self).setUp()
# Write the fake tf.train.SequenceExample to file for test.
data_dir = os.path.join(self.get_temp_dir(), 'data')
tf.io.gfile.makedirs(data_dir)
self._data_path = os.path.join(data_dir, 'data.tfrecord')
examples = [
tfexample_utils.make_video_test_example(
image_shape=(36, 36, 3),
audio_shape=(20, 128),
label=random.randint(0, 100)) for _ in range(2)
]
tfexample_utils.dump_to_tfrecord(self._data_path, tf_examples=examples)
def test_foo(self):
dataset = tf.data.TFRecordDataset(self._data_path)
...
```
"""
from typing import Mapping, Optional, Sequence, Union
import numpy as np
import tensorflow as tf, tf_keras
from official.core import file_writers
from official.vision.data import fake_feature_generator
from official.vision.data import image_utils
from official.vision.data import tf_example_builder
IMAGE_KEY = 'image/encoded'
CLASSIFICATION_LABEL_KEY = 'image/class/label'
DISTILLATION_LABEL_KEY = 'image/class/soft_labels'
LABEL_KEY = 'clip/label/index'
AUDIO_KEY = 'features/audio'
DUMP_SOURCE_ID = b'7435790'
def encode_image(image_array: np.ndarray, fmt: str) -> bytes:
return image_utils.encode_image(image_array, fmt)
def make_image_bytes(shape: Sequence[int], fmt: str = 'JPEG') -> bytes:
"""Generates image and return bytes in specified format."""
image = fake_feature_generator.generate_image_np(*shape)
return encode_image(image, fmt=fmt)
def put_int64_to_context(seq_example: tf.train.SequenceExample,
label: int = 0,
key: str = LABEL_KEY):
"""Puts int64 to SequenceExample context with key."""
seq_example.context.feature[key].int64_list.value[:] = [label]
def put_bytes_list_to_feature(seq_example: tf.train.SequenceExample,
raw_image_bytes: bytes,
key: str = IMAGE_KEY,
repeat_num: int = 2):
"""Puts bytes list to SequenceExample context with key."""
for _ in range(repeat_num):
seq_example.feature_lists.feature_list.get_or_create(
key).feature.add().bytes_list.value[:] = [raw_image_bytes]
def put_float_list_to_feature(seq_example: tf.train.SequenceExample,
value: Sequence[Sequence[float]], key: str):
"""Puts float list to SequenceExample context with key."""
for s in value:
seq_example.feature_lists.feature_list.get_or_create(
key).feature.add().float_list.value[:] = s
def make_video_test_example(image_shape: Sequence[int] = (263, 320, 3),
audio_shape: Sequence[int] = (10, 256),
label: int = 42):
"""Generates data for testing video models (inc. RGB, audio, & label)."""
raw_image_bytes = make_image_bytes(shape=image_shape)
random_audio = np.random.normal(size=audio_shape).tolist()
seq_example = tf.train.SequenceExample()
put_int64_to_context(seq_example, label=label, key=LABEL_KEY)
put_bytes_list_to_feature(
seq_example, raw_image_bytes, key=IMAGE_KEY, repeat_num=4)
put_float_list_to_feature(seq_example, value=random_audio, key=AUDIO_KEY)
return seq_example
def dump_to_tfrecord(
record_file: str,
tf_examples: Sequence[Union[tf.train.Example, tf.train.SequenceExample]],
file_type: str = 'tfrecord'):
"""Writes serialized Example to TFRecord file with path.
Note that examples are expected to be not seriazlied.
Args:
record_file: The name of the output file.
tf_examples: A list of examples to be stored.
file_type: A string indicating the file format, could be: 'tfrecord',
'tfrecords', 'tfrecord_compressed', 'tfrecords_gzip', 'riegeli'. The
string is case insensitive.
"""
file_writers.write_small_dataset(tf_examples, record_file, file_type)
def create_classification_example(
image_height: int,
image_width: int,
image_format: str = 'JPEG',
is_multilabel: bool = False,
output_serialized_example: bool = True) -> tf.train.Example:
"""Creates image and labels for image classification input pipeline.
Args:
image_height: The height of test image.
image_width: The width of test image.
image_format: The format of test image.
is_multilabel: A boolean flag represents whether the test image can have
multiple labels.
output_serialized_example: A boolean flag represents whether to return a
serialized example.
Returns:
A tf.train.Example for testing.
"""
image = fake_feature_generator.generate_image_np(image_height, image_width)
labels = fake_feature_generator.generate_classes_np(2,
int(is_multilabel) +
1).tolist()
builder = tf_example_builder.TfExampleBuilder()
example = builder.add_image_matrix_feature(image, image_format,
DUMP_SOURCE_ID).add_ints_feature(
CLASSIFICATION_LABEL_KEY,
labels).example
if output_serialized_example:
return example.SerializeToString()
return example
def create_distillation_example(
image_height: int,
image_width: int,
num_labels: int,
image_format: str = 'JPEG',
output_serialized_example: bool = True) -> tf.train.Example:
"""Creates image and labels for image classification with distillation.
Args:
image_height: The height of test image.
image_width: The width of test image.
num_labels: The number of labels used in test image.
image_format: The format of test image.
output_serialized_example: A boolean flag represents whether to return a
serialized example.
Returns:
A tf.train.Example for testing.
"""
image = fake_feature_generator.generate_image_np(image_height, image_width)
labels = fake_feature_generator.generate_classes_np(2, 1).tolist()
soft_labels = (fake_feature_generator.generate_classes_np(1, num_labels) +
0.6).tolist()
builder = tf_example_builder.TfExampleBuilder()
example = builder.add_image_matrix_feature(image, image_format,
DUMP_SOURCE_ID).add_ints_feature(
CLASSIFICATION_LABEL_KEY,
labels).add_floats_feature(
DISTILLATION_LABEL_KEY,
soft_labels).example
if output_serialized_example:
return example.SerializeToString()
return example
def create_3d_image_test_example(
image_height: int,
image_width: int,
image_volume: int,
image_channel: int,
num_classes: int = 2,
output_serialized_example: bool = False) -> tf.train.Example:
"""Creates 3D image and label.
Args:
image_height: The height of test 3D image.
image_width: The width of test 3D image.
image_volume: The volume of test 3D image.
image_channel: The channel of test 3D image.
num_classes: The number of classes of the test 3D label.
output_serialized_example: A boolean flag represents whether to return a
serialized example.
Returns:
A tf.train.Example for testing.
"""
image = fake_feature_generator.generate_image_np(image_height, image_width,
image_channel)
images = image[:, :, np.newaxis, :]
images = np.tile(images, [1, 1, image_volume, 1]).astype(np.float32)
label_shape = [image_height, image_width, image_volume, num_classes]
labels = (
fake_feature_generator.generate_classes_np(
num_classes, np.prod(label_shape)
)
.reshape(label_shape)
.astype(np.float32)
)
builder = tf_example_builder.TfExampleBuilder()
example = builder.add_bytes_feature(IMAGE_KEY,
images.tobytes()).add_bytes_feature(
CLASSIFICATION_LABEL_KEY,
labels.tobytes()).example
if output_serialized_example:
return example.SerializeToString()
return example
def create_detection_test_example(
image_height: int,
image_width: int,
image_channel: int,
num_instances: int,
fill_image_size: bool = True,
output_serialized_example: bool = False) -> tf.train.Example:
"""Creates and returns a test example containing box and mask annotations.
Args:
image_height: The height of test image.
image_width: The width of test image.
image_channel: The channel of test image.
num_instances: The number of object instances per image.
fill_image_size: If image height and width will be added to the example.
output_serialized_example: A boolean flag represents whether to return a
serialized example.
Returns:
A tf.train.Example for testing.
"""
image = fake_feature_generator.generate_image_np(image_height, image_width,
image_channel)
boxes = fake_feature_generator.generate_normalized_boxes_np(num_instances)
ymins, xmins, ymaxs, xmaxs = boxes.T.tolist()
is_crowds = [0] * num_instances
labels = fake_feature_generator.generate_classes_np(
2, size=num_instances).tolist()
labels_text = [b'class_1'] * num_instances
masks = fake_feature_generator.generate_instance_masks_np(
image_height, image_width, boxes)
builder = tf_example_builder.TfExampleBuilder()
example = builder.add_image_matrix_feature(
image, image_source_id=DUMP_SOURCE_ID).add_boxes_feature(
xmins, xmaxs, ymins, ymaxs,
labels).add_instance_mask_matrices_feature(masks).add_ints_feature(
'image/object/is_crowd',
is_crowds).add_bytes_feature('image/object/class/text',
labels_text).example
if not fill_image_size:
del example.features.feature['image/height']
del example.features.feature['image/width']
if output_serialized_example:
return example.SerializeToString()
return example
def create_segmentation_test_example(
image_height: int,
image_width: int,
image_channel: int,
output_serialized_example: bool = False,
dense_features: Optional[Mapping[str, int]] = None) -> tf.train.Example:
"""Creates and returns a test example containing mask annotations.
Args:
image_height: The height of test image.
image_width: The width of test image.
image_channel: The channel of test image.
output_serialized_example: A boolean flag represents whether to return a
serialized example.
dense_features: An optional dictionary of additional dense features, where
the key is the prefix of the feature key in tf.Example and the value is
the number of the channels of this feature.
Returns:
A tf.train.Example for testing.
"""
image = fake_feature_generator.generate_image_np(image_height, image_width,
image_channel)
mask = fake_feature_generator.generate_semantic_mask_np(
image_height, image_width, 3)
builder = tf_example_builder.TfExampleBuilder()
builder.add_image_matrix_feature(
image,
image_source_id=DUMP_SOURCE_ID).add_semantic_mask_matrix_feature(mask)
if dense_features:
for prefix, channel in dense_features.items():
dense_feature = fake_feature_generator.generate_semantic_mask_np(
image_height, image_width, channel)
builder.add_semantic_mask_matrix_feature(
dense_feature, feature_prefix=prefix)
example = builder.example
if output_serialized_example:
return example.SerializeToString()
return example
|