File size: 6,615 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""2D detection evaluator for the Waymo Open Dataset."""
import pprint
from absl import logging

import tensorflow as tf, tf_keras
from official.vision.ops import box_ops
from waymo_open_dataset import label_pb2
from waymo_open_dataset.metrics.python import wod_detection_evaluator
from waymo_open_dataset.protos import breakdown_pb2
from waymo_open_dataset.protos import metrics_pb2


def get_2d_detection_default_config():
  """Returns the config proto for WOD 2D detection Evaluation."""
  config = metrics_pb2.Config()

  config.breakdown_generator_ids.append(breakdown_pb2.Breakdown.OBJECT_TYPE)
  difficulty = config.difficulties.add()
  difficulty.levels.append(label_pb2.Label.LEVEL_1)
  difficulty.levels.append(label_pb2.Label.LEVEL_2)
  config.breakdown_generator_ids.append(breakdown_pb2.Breakdown.ALL_BUT_SIGN)
  difficulty = config.difficulties.add()
  difficulty.levels.append(label_pb2.Label.LEVEL_1)
  difficulty.levels.append(label_pb2.Label.LEVEL_2)
  config.matcher_type = metrics_pb2.MatcherProto.TYPE_HUNGARIAN
  config.iou_thresholds.append(0.0)
  config.iou_thresholds.append(0.7)
  config.iou_thresholds.append(0.5)
  config.iou_thresholds.append(0.5)
  config.iou_thresholds.append(0.5)
  config.box_type = label_pb2.Label.Box.TYPE_2D

  for i in range(100):
    config.score_cutoffs.append(i * 0.01)
  config.score_cutoffs.append(1.0)

  return config


class WOD2dDetectionEvaluator(wod_detection_evaluator.WODDetectionEvaluator):
  """WOD 2D detection evaluation metric class."""

  def __init__(self, config=None):
    if config is None:
      config = get_2d_detection_default_config()
    super().__init__(config=config)

  def _remove_padding(self, tensor_dict, num_valid):
    """Remove the paddings of the prediction/groundtruth data."""
    result_tensor_dict = {}
    gather_indices = tf.range(num_valid)
    for k, v in tensor_dict.items():
      if 'frame_id' in k:
        result_tensor_dict[k] = tf.tile([v], [num_valid])
      else:
        result_tensor_dict[k] = tf.gather(v, gather_indices)
    return result_tensor_dict

  def update_state(self, groundtruths, predictions):
    """Update the metrics state with prediction and ground-truth data.

    Args:
      groundtruths: a dictionary of Tensors including the fields below.
        Required fields:
          - source_id: a numpy array of int or string of shape [batch_size].
          - num_detections: a numpy array of int of shape [batch_size].
          - boxes: a numpy array of float of shape [batch_size, K, 4].
          - classes: a numpy array of int of shape [batch_size, K].
          - difficulties: a numpy array of int of shape [batch_size, K].

      predictions: a dictionary of tensors including the fields below.
        Required fields:
          - source_id: a numpy array of int or string of shape [batch_size].
          - image_info: a numpy array of float of shape [batch_size, 4, 2].
          - num_detections: a numpy array of int of shape [batch_size].
          - detection_boxes: a numpy array of float of shape [batch_size, K, 4].
          - detection_classes: a numpy array of int of shape [batch_size, K].
          - detection_scores: a numpy array of float of shape [batch_size, K].
    """
    # Preprocess potentially aggregated tensors.
    for k, v in groundtruths.items():
      if isinstance(v, tuple):
        groundtruths[k] = tf.concat(v, axis=0)
    for k, v in predictions.items():
      if isinstance(v, tuple):
        predictions[k] = tf.concat(v, axis=0)

    # Change cyclists' type id from 3 to 4, where 3 is reserved for sign.
    groundtruth_type = tf.cast(groundtruths['classes'], tf.uint8)
    groundtruth_type = tf.where(
        tf.equal(groundtruth_type, 3),
        tf.ones_like(groundtruth_type) * 4, groundtruth_type)
    prediction_type = tf.cast(predictions['detection_classes'], tf.uint8)
    prediction_type = tf.where(
        tf.equal(prediction_type, 3),
        tf.ones_like(prediction_type) * 4, prediction_type)

    # Rescale the detection boxes back to original scale.
    image_scale = tf.tile(predictions['image_info'][:, 2:3, :], (1, 1, 2))
    prediction_bbox = predictions['detection_boxes'] / image_scale

    batch_size = tf.shape(groundtruths['source_id'])[0]

    for i in tf.range(batch_size):
      frame_groundtruths = {
          'ground_truth_frame_id':
              groundtruths['source_id'][i],
          'ground_truth_bbox':
              box_ops.yxyx_to_cycxhw(
                  tf.cast(groundtruths['boxes'][i], tf.float32)),
          'ground_truth_type':
              groundtruth_type[i],
          'ground_truth_difficulty':
              tf.cast(groundtruths['difficulties'][i], tf.uint8),
      }
      frame_groundtruths = self._remove_padding(
          frame_groundtruths, groundtruths['num_detections'][i])
      frame_predictions = {
          'prediction_frame_id':
              groundtruths['source_id'][i],
          'prediction_bbox':
              box_ops.yxyx_to_cycxhw(
                  tf.cast(prediction_bbox[i], tf.float32)),
          'prediction_type':
              prediction_type[i],
          'prediction_score':
              tf.cast(predictions['detection_scores'][i], tf.float32),
          'prediction_overlap_nlz':
              tf.zeros_like(predictions['detection_scores'][i], dtype=tf.bool)
      }
      frame_predictions = self._remove_padding(frame_predictions,
                                               predictions['num_detections'][i])
      super().update_state(frame_groundtruths, frame_predictions)

  def evaluate(self):
    """Compute the final metrics."""
    ap, _, _, _, _, _, _ = super().evaluate()
    metric_dict = {}
    for i, name in enumerate(self._breakdown_names):
      # Skip sign metrics in 2d detection task.
      if 'SIGN' in name:
        continue
      metric_dict['WOD metrics/{}/AP'.format(name)] = ap[i]
    pp = pprint.PrettyPrinter()
    logging.info('WOD Detection Metrics: \n %s', pp.pformat(metric_dict))

    return metric_dict