File size: 8,107 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Losses used for detection models."""

# Import libraries
import tensorflow as tf, tf_keras


def focal_loss(logits, targets, alpha, gamma):
  """Compute the focal loss between `logits` and the golden `target` values.

  Focal loss = -(1-pt)^gamma * log(pt)
  where pt is the probability of being classified to the true class.

  Args:
    logits: A float32 tensor of size
      [batch, d_1, ..., d_k, n_classes].
    targets: A float32 tensor of size
      [batch, d_1, ..., d_k, n_classes].
    alpha: A float32 scalar multiplying alpha to the loss from positive examples
      and (1-alpha) to the loss from negative examples.
    gamma: A float32 scalar modulating loss from hard and easy examples.

  Returns:
    loss: A float32 Tensor of size
      [batch, d_1, ..., d_k, n_classes] representing
      normalized loss on the prediction map.
  """
  with tf.name_scope('focal_loss'):
    positive_label_mask = tf.equal(targets, 1.0)
    cross_entropy = (
        tf.nn.sigmoid_cross_entropy_with_logits(labels=targets, logits=logits))
    probs = tf.sigmoid(logits)
    probs_gt = tf.where(positive_label_mask, probs, 1.0 - probs)
    # With small gamma, the implementation could produce NaN during back prop.
    modulator = tf.pow(1.0 - probs_gt, gamma)
    loss = modulator * cross_entropy
    weighted_loss = tf.where(positive_label_mask, alpha * loss,
                             (1.0 - alpha) * loss)

  return weighted_loss


class FocalLoss(tf_keras.losses.Loss):
  """Implements a Focal loss for classification problems.

  Reference:
    [Focal Loss for Dense Object Detection](https://arxiv.org/abs/1708.02002).
  """

  def __init__(self,
               alpha,
               gamma,
               num_classes,
               reduction=tf_keras.losses.Reduction.AUTO,
               name=None):
    """Initializes `FocalLoss`.

    Args:
      alpha: The `alpha` weight factor for binary class imbalance.
      gamma: The `gamma` focusing parameter to re-weight loss.
      num_classes: Number of foreground classes.
      reduction: (Optional) Type of `tf_keras.losses.Reduction` to apply to
        loss. Default value is `AUTO`. `AUTO` indicates that the reduction
        option will be determined by the usage context. For almost all cases
        this defaults to `SUM_OVER_BATCH_SIZE`. When used with
        `tf.distribute.Strategy`, outside of built-in training loops such as
        `tf.keras` `compile` and `fit`, using `AUTO` or `SUM_OVER_BATCH_SIZE`
        will raise an error. Please see this custom training [tutorial](
          https://www.tensorflow.org/tutorials/distribute/custom_training) for
            more details.
      name: Optional name for the op. Defaults to 'retinanet_class_loss'.
    """
    self._num_classes = num_classes
    self._alpha = alpha
    self._gamma = gamma
    super(FocalLoss, self).__init__(reduction=reduction, name=name)

  def call(self, y_true, y_pred):
    """Invokes the `FocalLoss`.

    Args:
      y_true: Ordered Dict with level to [batch, height, width, num_anchors].
        for example,
        {3: tf.Tensor(shape=[32, 512, 512, 9], dtype=tf.float32),
         4: tf.Tensor([shape=32, 256, 256, 9, dtype=tf.float32])}
      y_pred: Ordered Dict with level to [batch, height, width, num_anchors *
        num_classes]. for example,
        {3: tf.Tensor(shape=[32, 512, 512, 9], dtype=tf.int64),
         4: tf.Tensor(shape=[32, 256, 256, 9 * 21], dtype=tf.int64)}

    Returns:
      Summed loss float `Tensor`.
    """
    flattened_cls_outputs = []
    flattened_labels = []
    batch_size = None
    for level in y_pred.keys():
      cls_output = y_pred[level]
      label = y_true[level]
      if batch_size is None:
        batch_size = cls_output.shape[0] or tf.shape(cls_output)[0]
      flattened_cls_outputs.append(
          tf.reshape(cls_output, [batch_size, -1, self._num_classes]))
      flattened_labels.append(tf.reshape(label, [batch_size, -1]))
    cls_outputs = tf.concat(flattened_cls_outputs, axis=1)
    labels = tf.concat(flattened_labels, axis=1)

    cls_targets_one_hot = tf.one_hot(labels, self._num_classes)
    return focal_loss(
        tf.cast(cls_outputs, dtype=tf.float32),
        tf.cast(cls_targets_one_hot, dtype=tf.float32), self._alpha,
        self._gamma)

  def get_config(self):
    config = {
        'alpha': self._alpha,
        'gamma': self._gamma,
        'num_classes': self._num_classes,
    }
    base_config = super(FocalLoss, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))


class RetinanetBoxLoss(tf_keras.losses.Loss):
  """RetinaNet box Huber loss."""

  def __init__(self,
               delta,
               reduction=tf_keras.losses.Reduction.AUTO,
               name=None):
    """Initializes `RetinanetBoxLoss`.

    Args:
      delta: A float, the point where the Huber loss function changes from a
        quadratic to linear.
      reduction: (Optional) Type of `tf_keras.losses.Reduction` to apply to
        loss. Default value is `AUTO`. `AUTO` indicates that the reduction
        option will be determined by the usage context. For almost all cases
        this defaults to `SUM_OVER_BATCH_SIZE`. When used with
        `tf.distribute.Strategy`, outside of built-in training loops such as
        `tf.keras` `compile` and `fit`, using `AUTO` or `SUM_OVER_BATCH_SIZE`
        will raise an error. Please see this custom training [tutorial](
          https://www.tensorflow.org/tutorials/distribute/custom_training) for
            more details.
      name: Optional name for the op. Defaults to 'retinanet_class_loss'.
    """
    self._huber_loss = tf_keras.losses.Huber(
        delta=delta, reduction=tf_keras.losses.Reduction.NONE)
    self._delta = delta
    super(RetinanetBoxLoss, self).__init__(reduction=reduction, name=name)

  def call(self, y_true, y_pred):
    """Computes box detection loss.

    Computes total detection loss including box and class loss from all levels.

    Args:
      y_true: Ordered Dict with level to [batch, height, width,
        num_anchors * 4] for example,
        {3: tf.Tensor(shape=[32, 512, 512, 9 * 4], dtype=tf.float32),
         4: tf.Tensor([shape=32, 256, 256, 9 * 4, dtype=tf.float32])}
      y_pred: Ordered Dict with level to [batch, height, width,
        num_anchors * 4]. for example,
        {3: tf.Tensor(shape=[32, 512, 512, 9 * 4], dtype=tf.int64),
         4: tf.Tensor(shape=[32, 256, 256, 9 * 4], dtype=tf.int64)}

    Returns:
      an integer tensor representing total box regression loss.
    """
    # Sums all positives in a batch for normalization and avoids zero
    # num_positives_sum, which would lead to inf loss during training

    flattened_box_outputs = []
    flattened_labels = []
    batch_size = None
    for level in y_pred.keys():
      box_output = y_pred[level]
      label = y_true[level]
      if batch_size is None:
        batch_size = box_output.shape[0] or tf.shape(box_output)[0]
      flattened_box_outputs.append(tf.reshape(box_output, [batch_size, -1, 4]))
      flattened_labels.append(tf.reshape(label, [batch_size, -1, 4]))
    box_outputs = tf.concat(flattened_box_outputs, axis=1)
    labels = tf.concat(flattened_labels, axis=1)
    loss = self._huber_loss(labels, box_outputs)
    return loss

  def get_config(self):
    config = {
        'delta': self._delta,
    }
    base_config = super(RetinanetBoxLoss, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))