Spaces:
Runtime error
Runtime error
File size: 11,424 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Losses used for segmentation models."""
import tensorflow as tf, tf_keras
from official.modeling import tf_utils
from official.vision.dataloaders import utils
EPSILON = 1e-5
class SegmentationLoss:
"""Semantic segmentation loss."""
def __init__(self,
label_smoothing,
class_weights,
ignore_label,
use_groundtruth_dimension,
use_binary_cross_entropy=False,
top_k_percent_pixels=1.0,
gt_is_matting_map=False):
"""Initializes `SegmentationLoss`.
Args:
label_smoothing: A float, if > 0., smooth out one-hot probability by
spreading the amount of probability to all other label classes.
class_weights: A float list containing the weight of each class.
ignore_label: An integer specifying the ignore label.
use_groundtruth_dimension: A boolean, whether to resize the output to
match the dimension of the ground truth.
use_binary_cross_entropy: A boolean, if true, use binary cross entropy
loss, otherwise, use categorical cross entropy.
top_k_percent_pixels: A float, the value lies in [0.0, 1.0]. When its
value < 1., only compute the loss for the top k percent pixels. This is
useful for hard pixel mining.
gt_is_matting_map: If or not the groundtruth mask is a matting map. Note
that the matting map is only supported for 2 class segmentation.
"""
self._label_smoothing = label_smoothing
self._class_weights = class_weights
self._ignore_label = ignore_label
self._use_groundtruth_dimension = use_groundtruth_dimension
self._use_binary_cross_entropy = use_binary_cross_entropy
self._top_k_percent_pixels = top_k_percent_pixels
self._gt_is_matting_map = gt_is_matting_map
def __call__(self, logits, labels, **kwargs):
"""Computes `SegmentationLoss`.
Args:
logits: A float tensor in shape (batch_size, height, width, num_classes)
which is the output of the network.
labels: A tensor in shape (batch_size, height, width, num_layers), which
is the label masks of the ground truth. The num_layers can be > 1 if the
pixels are labeled as multiple classes.
**kwargs: additional keyword arguments.
Returns:
A 0-D float which stores the overall loss of the batch.
"""
_, height, width, num_classes = logits.get_shape().as_list()
output_dtype = logits.dtype
num_layers = labels.get_shape().as_list()[-1]
if not self._use_binary_cross_entropy:
if num_layers > 1:
raise ValueError(
'Groundtruth mask must have only 1 layer if using categorical'
'cross entropy, but got {} layers.'.format(num_layers))
if self._gt_is_matting_map:
if num_classes != 2:
raise ValueError(
'Groundtruth matting map only supports 2 classes, but got {} '
'classes.'.format(num_classes))
if num_layers > 1:
raise ValueError(
'Groundtruth matting map must have only 1 layer, but got {} '
'layers.'.format(num_layers))
class_weights = (
self._class_weights if self._class_weights else [1] * num_classes)
if num_classes != len(class_weights):
raise ValueError(
'Length of class_weights should be {}'.format(num_classes))
class_weights = tf.constant(class_weights, dtype=output_dtype)
if not self._gt_is_matting_map:
labels = tf.cast(labels, tf.int32)
if self._use_groundtruth_dimension:
# TODO(arashwan): Test using align corners to match deeplab alignment.
logits = tf.image.resize(
logits, tf.shape(labels)[1:3], method=tf.image.ResizeMethod.BILINEAR)
else:
labels = tf.image.resize(
labels, (height, width),
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
valid_mask = tf.not_equal(tf.cast(labels, tf.int32), self._ignore_label)
# (batch_size, height, width, num_classes)
labels_with_prob = self.get_labels_with_prob(logits, labels, valid_mask,
**kwargs)
# (batch_size, height, width)
valid_mask = tf.cast(tf.reduce_any(valid_mask, axis=-1), dtype=output_dtype)
if self._use_binary_cross_entropy:
# (batch_size, height, width, num_classes)
cross_entropy_loss = tf.nn.sigmoid_cross_entropy_with_logits(
labels=labels_with_prob, logits=logits)
# (batch_size, height, width, num_classes)
cross_entropy_loss *= class_weights
num_valid_values = tf.reduce_sum(valid_mask) * tf.cast(
num_classes, output_dtype)
# (batch_size, height, width, num_classes)
cross_entropy_loss *= valid_mask[..., tf.newaxis]
else:
# (batch_size, height, width)
cross_entropy_loss = tf.nn.softmax_cross_entropy_with_logits(
labels=labels_with_prob, logits=logits)
# If groundtruth is matting map, binarize the value to create the weight
# mask
if self._gt_is_matting_map:
labels = utils.binarize_matting_map(labels)
# (batch_size, height, width)
weight_mask = tf.einsum(
'...y,y->...',
tf.one_hot(
tf.cast(tf.squeeze(labels, axis=-1), tf.int32),
depth=num_classes,
dtype=output_dtype), class_weights)
cross_entropy_loss *= weight_mask
num_valid_values = tf.reduce_sum(valid_mask)
cross_entropy_loss *= valid_mask
if self._top_k_percent_pixels < 1.0:
return self.aggregate_loss_top_k(cross_entropy_loss, num_valid_values)
else:
return tf.reduce_sum(cross_entropy_loss) / (num_valid_values + EPSILON)
def get_labels_with_prob(self, logits, labels, valid_mask, **unused_kwargs):
"""Get a tensor representing the probability of each class for each pixel.
This method can be overridden in subclasses for customizing loss function.
Args:
logits: A float tensor in shape (batch_size, height, width, num_classes)
which is the output of the network.
labels: A tensor in shape (batch_size, height, width, num_layers), which
is the label masks of the ground truth. The num_layers can be > 1 if the
pixels are labeled as multiple classes.
valid_mask: A bool tensor in shape (batch_size, height, width, num_layers)
which indicates the ignored labels in each ground truth layer.
**unused_kwargs: Unused keyword arguments.
Returns:
A float tensor in shape (batch_size, height, width, num_classes).
"""
num_classes = logits.get_shape().as_list()[-1]
if self._gt_is_matting_map:
# (batch_size, height, width, num_classes=2)
train_labels = tf.concat([1 - labels, labels], axis=-1)
else:
labels = tf.cast(labels, tf.int32)
# Assign pixel with ignore label to class -1, which will be ignored by
# tf.one_hot operation.
# (batch_size, height, width, num_masks)
labels = tf.where(valid_mask, labels, -tf.ones_like(labels))
if self._use_binary_cross_entropy:
# (batch_size, height, width, num_masks, num_classes)
one_hot_labels_per_mask = tf.one_hot(
labels,
depth=num_classes,
on_value=True,
off_value=False,
dtype=tf.bool,
axis=-1)
# Aggregate all one-hot labels to get a binary mask in shape
# (batch_size, height, width, num_classes), which represents all the
# classes that a pixel is labeled as.
# For example, if a pixel is labeled as "window" (id=1) and also being a
# part of the "building" (id=3), then its train_labels are [0,1,0,1].
train_labels = tf.cast(
tf.reduce_any(one_hot_labels_per_mask, axis=-2), dtype=logits.dtype)
else:
# (batch_size, height, width, num_classes)
train_labels = tf.one_hot(
tf.squeeze(labels, axis=-1), depth=num_classes, dtype=logits.dtype)
return train_labels * (
1 - self._label_smoothing) + self._label_smoothing / num_classes
def aggregate_loss_top_k(self, pixelwise_loss, num_valid_pixels=None):
"""Aggregate the top-k greatest pixelwise loss.
Args:
pixelwise_loss: a float tensor in shape (batch_size, height, width) which
stores the loss of each pixel.
num_valid_pixels: the number of pixels which are not ignored. If None, all
the pixels are valid.
Returns:
A 0-D float which stores the overall loss of the batch.
"""
pixelwise_loss = tf.reshape(pixelwise_loss, shape=[-1])
top_k_pixels = tf.cast(
self._top_k_percent_pixels
* tf.cast(tf.size(pixelwise_loss), tf.float32),
tf.int32,
)
top_k_losses, _ = tf.math.top_k(pixelwise_loss, k=top_k_pixels)
normalizer = tf.cast(top_k_pixels, top_k_losses.dtype)
if num_valid_pixels is not None:
normalizer = tf.minimum(normalizer,
tf.cast(num_valid_pixels, top_k_losses.dtype))
return tf.reduce_sum(top_k_losses) / (normalizer + EPSILON)
def get_actual_mask_scores(logits, labels, ignore_label):
"""Gets actual mask scores."""
_, height, width, num_classes = logits.get_shape().as_list()
batch_size = tf.shape(logits)[0]
logits = tf.stop_gradient(logits)
labels = tf.image.resize(
labels, (height, width), method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
predicted_labels = tf.argmax(logits, -1, output_type=tf.int32)
flat_predictions = tf.reshape(predicted_labels, [batch_size, -1])
flat_labels = tf.cast(tf.reshape(labels, [batch_size, -1]), tf.int32)
one_hot_predictions = tf.one_hot(
flat_predictions, num_classes, on_value=True, off_value=False)
one_hot_labels = tf.one_hot(
flat_labels, num_classes, on_value=True, off_value=False)
keep_mask = tf.not_equal(flat_labels, ignore_label)
keep_mask = tf.expand_dims(keep_mask, 2)
overlap = tf.logical_and(one_hot_predictions, one_hot_labels)
overlap = tf.logical_and(overlap, keep_mask)
overlap = tf.reduce_sum(tf.cast(overlap, tf.float32), axis=1)
union = tf.logical_or(one_hot_predictions, one_hot_labels)
union = tf.logical_and(union, keep_mask)
union = tf.reduce_sum(tf.cast(union, tf.float32), axis=1)
actual_scores = tf.divide(overlap, tf.maximum(union, EPSILON))
return actual_scores
class MaskScoringLoss:
"""Mask Scoring loss."""
def __init__(self, ignore_label):
self._ignore_label = ignore_label
self._mse_loss = tf_keras.losses.MeanSquaredError(
reduction=tf_keras.losses.Reduction.NONE)
def __call__(self, predicted_scores, logits, labels):
actual_scores = get_actual_mask_scores(logits, labels, self._ignore_label)
loss = tf_utils.safe_mean(self._mse_loss(actual_scores, predicted_scores))
return loss
|