File size: 18,210 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""RetinaNet task definition."""
from typing import Any, List, Mapping, Optional, Tuple

from absl import logging
import tensorflow as tf, tf_keras

from official.common import dataset_fn
from official.core import base_task
from official.core import task_factory
from official.vision.configs import retinanet as exp_cfg
from official.vision.dataloaders import input_reader
from official.vision.dataloaders import input_reader_factory
from official.vision.dataloaders import retinanet_input
from official.vision.dataloaders import tf_example_decoder
from official.vision.dataloaders import tfds_factory
from official.vision.dataloaders import tf_example_label_map_decoder
from official.vision.evaluation import coco_evaluator
from official.vision.losses import focal_loss
from official.vision.losses import loss_utils
from official.vision.modeling import factory
from official.vision.utils.object_detection import visualization_utils


@task_factory.register_task_cls(exp_cfg.RetinaNetTask)
class RetinaNetTask(base_task.Task):
  """A single-replica view of training procedure.

  RetinaNet task provides artifacts for training/evalution procedures, including
  loading/iterating over Datasets, initializing the model, calculating the loss,
  post-processing, and customized metrics with reduction.
  """

  def build_model(self):
    """Build RetinaNet model."""

    input_specs = tf_keras.layers.InputSpec(
        shape=[None] + self.task_config.model.input_size)

    l2_weight_decay = self.task_config.losses.l2_weight_decay
    # Divide weight decay by 2.0 to match the implementation of tf.nn.l2_loss.
    # (https://www.tensorflow.org/api_docs/python/tf/keras/regularizers/l2)
    # (https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss)
    l2_regularizer = (tf_keras.regularizers.l2(
        l2_weight_decay / 2.0) if l2_weight_decay else None)

    model = factory.build_retinanet(
        input_specs=input_specs,
        model_config=self.task_config.model,
        l2_regularizer=l2_regularizer)

    if self.task_config.freeze_backbone:
      model.backbone.trainable = False

    return model

  def initialize(self, model: tf_keras.Model):
    """Loading pretrained checkpoint."""
    if not self.task_config.init_checkpoint:
      return

    ckpt_dir_or_file = self.task_config.init_checkpoint
    if tf.io.gfile.isdir(ckpt_dir_or_file):
      ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file)

    # Restoring checkpoint.
    if self.task_config.init_checkpoint_modules == 'all':
      ckpt = tf.train.Checkpoint(**model.checkpoint_items)
      status = ckpt.read(ckpt_dir_or_file)
      status.expect_partial().assert_existing_objects_matched()
    else:
      ckpt_items = {}
      if 'backbone' in self.task_config.init_checkpoint_modules:
        ckpt_items.update(backbone=model.backbone)
      if 'decoder' in self.task_config.init_checkpoint_modules:
        ckpt_items.update(decoder=model.decoder)

      ckpt = tf.train.Checkpoint(**ckpt_items)
      status = ckpt.read(ckpt_dir_or_file)
      status.expect_partial().assert_existing_objects_matched()

    logging.info('Finished loading pretrained checkpoint from %s',
                 ckpt_dir_or_file)

  def build_inputs(self,
                   params: exp_cfg.DataConfig,
                   input_context: Optional[tf.distribute.InputContext] = None):
    """Build input dataset."""

    if params.tfds_name:
      decoder = tfds_factory.get_detection_decoder(params.tfds_name)
    else:
      decoder_cfg = params.decoder.get()
      if params.decoder.type == 'simple_decoder':
        decoder = tf_example_decoder.TfExampleDecoder(
            regenerate_source_id=decoder_cfg.regenerate_source_id,
            attribute_names=decoder_cfg.attribute_names,
        )
      elif params.decoder.type == 'label_map_decoder':
        decoder = tf_example_label_map_decoder.TfExampleDecoderLabelMap(
            label_map=decoder_cfg.label_map,
            regenerate_source_id=decoder_cfg.regenerate_source_id)
      else:
        raise ValueError('Unknown decoder type: {}!'.format(
            params.decoder.type))

    parser = retinanet_input.Parser(
        output_size=self.task_config.model.input_size[:2],
        min_level=self.task_config.model.min_level,
        max_level=self.task_config.model.max_level,
        num_scales=self.task_config.model.anchor.num_scales,
        aspect_ratios=self.task_config.model.anchor.aspect_ratios,
        anchor_size=self.task_config.model.anchor.anchor_size,
        dtype=params.dtype,
        match_threshold=params.parser.match_threshold,
        unmatched_threshold=params.parser.unmatched_threshold,
        box_coder_weights=(
            self.task_config.model.detection_generator.box_coder_weights
        ),
        aug_type=params.parser.aug_type,
        aug_rand_hflip=params.parser.aug_rand_hflip,
        aug_scale_min=params.parser.aug_scale_min,
        aug_scale_max=params.parser.aug_scale_max,
        skip_crowd_during_training=params.parser.skip_crowd_during_training,
        max_num_instances=params.parser.max_num_instances,
        pad=params.parser.pad,
        keep_aspect_ratio=params.parser.keep_aspect_ratio,
    )

    reader = input_reader_factory.input_reader_generator(
        params,
        dataset_fn=dataset_fn.pick_dataset_fn(params.file_type),
        decoder_fn=decoder.decode,
        combine_fn=input_reader.create_combine_fn(params),
        parser_fn=parser.parse_fn(params.is_training))
    dataset = reader.read(input_context=input_context)

    return dataset

  def build_attribute_loss(self,
                           attribute_heads: List[exp_cfg.AttributeHead],
                           outputs: Mapping[str, Any],
                           labels: Mapping[str, Any],
                           box_sample_weight: tf.Tensor) -> float:
    """Computes attribute loss.

    Args:
      attribute_heads: a list of attribute head configs.
      outputs: RetinaNet model outputs.
      labels: RetinaNet labels.
      box_sample_weight: normalized bounding box sample weights.

    Returns:
      Attribute loss of all attribute heads.
    """
    params = self.task_config
    attribute_loss = 0.0
    for head in attribute_heads:
      if head.name not in labels['attribute_targets']:
        raise ValueError(f'Attribute {head.name} not found in label targets.')
      if head.name not in outputs['attribute_outputs']:
        raise ValueError(f'Attribute {head.name} not found in model outputs.')

      if head.type == 'regression':
        y_true_att = loss_utils.multi_level_flatten(
            labels['attribute_targets'][head.name], last_dim=head.size
        )
        y_pred_att = loss_utils.multi_level_flatten(
            outputs['attribute_outputs'][head.name], last_dim=head.size
        )
        att_loss_fn = tf_keras.losses.Huber(
            1.0, reduction=tf_keras.losses.Reduction.SUM)
        att_loss = att_loss_fn(
            y_true=y_true_att,
            y_pred=y_pred_att,
            sample_weight=box_sample_weight)
      elif head.type == 'classification':
        y_true_att = loss_utils.multi_level_flatten(
            labels['attribute_targets'][head.name], last_dim=None
        )
        y_true_att = tf.one_hot(y_true_att, head.size)
        y_pred_att = loss_utils.multi_level_flatten(
            outputs['attribute_outputs'][head.name], last_dim=head.size
        )
        cls_loss_fn = focal_loss.FocalLoss(
            alpha=params.losses.focal_loss_alpha,
            gamma=params.losses.focal_loss_gamma,
            reduction=tf_keras.losses.Reduction.SUM,
        )
        att_loss = cls_loss_fn(
            y_true=y_true_att,
            y_pred=y_pred_att,
            sample_weight=box_sample_weight,
        )
      else:
        raise ValueError(f'Attribute type {head.type} not supported.')
      attribute_loss += att_loss

    return attribute_loss

  def build_losses(
      self,
      outputs: Mapping[str, Any],
      labels: Mapping[str, Any],
      aux_losses: Optional[Any] = None,
  ):
    """Build RetinaNet losses."""
    params = self.task_config
    attribute_heads = self.task_config.model.head.attribute_heads

    cls_loss_fn = focal_loss.FocalLoss(
        alpha=params.losses.focal_loss_alpha,
        gamma=params.losses.focal_loss_gamma,
        reduction=tf_keras.losses.Reduction.SUM)
    box_loss_fn = tf_keras.losses.Huber(
        params.losses.huber_loss_delta, reduction=tf_keras.losses.Reduction.SUM)

    # Sums all positives in a batch for normalization and avoids zero
    # num_positives_sum, which would lead to inf loss during training
    cls_sample_weight = labels['cls_weights']
    box_sample_weight = labels['box_weights']
    num_positives = tf.reduce_sum(box_sample_weight) + 1.0
    cls_sample_weight = cls_sample_weight / num_positives
    box_sample_weight = box_sample_weight / num_positives
    y_true_cls = loss_utils.multi_level_flatten(
        labels['cls_targets'], last_dim=None)
    y_true_cls = tf.one_hot(y_true_cls, params.model.num_classes)
    y_pred_cls = loss_utils.multi_level_flatten(
        outputs['cls_outputs'], last_dim=params.model.num_classes)
    y_true_box = loss_utils.multi_level_flatten(
        labels['box_targets'], last_dim=4)
    y_pred_box = loss_utils.multi_level_flatten(
        outputs['box_outputs'], last_dim=4)

    cls_loss = cls_loss_fn(
        y_true=y_true_cls, y_pred=y_pred_cls, sample_weight=cls_sample_weight)
    box_loss = box_loss_fn(
        y_true=y_true_box, y_pred=y_pred_box, sample_weight=box_sample_weight)

    model_loss = cls_loss + params.losses.box_loss_weight * box_loss

    if attribute_heads:
      model_loss += self.build_attribute_loss(attribute_heads, outputs, labels,
                                              box_sample_weight)

    total_loss = model_loss
    if aux_losses:
      reg_loss = tf.reduce_sum(aux_losses)
      total_loss = model_loss + reg_loss

    total_loss = params.losses.loss_weight * total_loss

    return total_loss, cls_loss, box_loss, model_loss

  def build_metrics(self, training: bool = True):
    """Build detection metrics."""
    metrics = []
    metric_names = ['total_loss', 'cls_loss', 'box_loss', 'model_loss']
    for name in metric_names:
      metrics.append(tf_keras.metrics.Mean(name, dtype=tf.float32))

    if not training:
      if (
          self.task_config.validation_data.tfds_name
          and self.task_config.annotation_file
      ):
        raise ValueError(
            "Can't evaluate using annotation file when TFDS is used."
        )
      if self._task_config.use_coco_metrics:
        self.coco_metric = coco_evaluator.COCOEvaluator(
            annotation_file=self.task_config.annotation_file,
            include_mask=False,
            per_category_metrics=self.task_config.per_category_metrics,
            max_num_eval_detections=self.task_config.max_num_eval_detections,
        )
      if self._task_config.use_wod_metrics:
        # To use Waymo open dataset metrics, please install one of the pip
        # package `waymo-open-dataset-tf-*` from
        # https://github.com/waymo-research/waymo-open-dataset/blob/master/docs/quick_start.md#use-pre-compiled-pippip3-packages-for-linux
        # Note that the package is built with specific tensorflow version and
        # will produce error if it does not match the tf version that is
        # currently used.
        try:
          from official.vision.evaluation import wod_detection_evaluator  # pylint: disable=g-import-not-at-top
        except ModuleNotFoundError:
          logging.error('waymo-open-dataset should be installed to enable Waymo'
                        ' evaluator.')
          raise
        self.wod_metric = wod_detection_evaluator.WOD2dDetectionEvaluator()

    return metrics

  def train_step(self,
                 inputs: Tuple[Any, Any],
                 model: tf_keras.Model,
                 optimizer: tf_keras.optimizers.Optimizer,
                 metrics: Optional[List[Any]] = None):
    """Does forward and backward.

    Args:
      inputs: a dictionary of input tensors.
      model: the model, forward pass definition.
      optimizer: the optimizer for this training step.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    features, labels = inputs
    num_replicas = tf.distribute.get_strategy().num_replicas_in_sync
    with tf.GradientTape() as tape:
      outputs = model(features, training=True)
      outputs = tf.nest.map_structure(
          lambda x: tf.cast(x, tf.float32), outputs)

      # Computes per-replica loss.
      loss, cls_loss, box_loss, model_loss = self.build_losses(
          outputs=outputs, labels=labels, aux_losses=model.losses
      )
      scaled_loss = loss / num_replicas

      # For mixed_precision policy, when LossScaleOptimizer is used, loss is
      # scaled for numerical stability.
      if isinstance(optimizer, tf_keras.mixed_precision.LossScaleOptimizer):
        scaled_loss = optimizer.get_scaled_loss(scaled_loss)

    tvars = model.trainable_variables
    grads = tape.gradient(scaled_loss, tvars)
    # Scales back gradient when LossScaleOptimizer is used.
    if isinstance(optimizer, tf_keras.mixed_precision.LossScaleOptimizer):
      grads = optimizer.get_unscaled_gradients(grads)
    optimizer.apply_gradients(list(zip(grads, tvars)))

    logs = {self.loss: loss}

    all_losses = {
        'total_loss': loss,
        'cls_loss': cls_loss,
        'box_loss': box_loss,
        'model_loss': model_loss,
    }
    if metrics:
      for m in metrics:
        m.update_state(all_losses[m.name])
        logs.update({m.name: m.result()})

    return logs

  def validation_step(self,
                      inputs: Tuple[Any, Any],
                      model: tf_keras.Model,
                      metrics: Optional[List[Any]] = None):
    """Validatation step.

    Args:
      inputs: a dictionary of input tensors.
      model: the keras.Model.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    features, labels = inputs

    outputs = model(features, anchor_boxes=labels['anchor_boxes'],
                    image_shape=labels['image_info'][:, 1, :],
                    training=False)
    loss, cls_loss, box_loss, model_loss = self.build_losses(
        outputs=outputs, labels=labels, aux_losses=model.losses
    )
    logs = {self.loss: loss}

    all_losses = {
        'total_loss': loss,
        'cls_loss': cls_loss,
        'box_loss': box_loss,
        'model_loss': model_loss,
    }

    if self._task_config.use_coco_metrics:
      coco_model_outputs = {
          'detection_boxes': outputs['detection_boxes'],
          'detection_scores': outputs['detection_scores'],
          'detection_classes': outputs['detection_classes'],
          'num_detections': outputs['num_detections'],
          'source_id': labels['groundtruths']['source_id'],
          'image_info': labels['image_info']
      }
      logs.update(
          {self.coco_metric.name: (labels['groundtruths'], coco_model_outputs)})
    if self.task_config.use_wod_metrics:
      wod_model_outputs = {
          'detection_boxes': outputs['detection_boxes'],
          'detection_scores': outputs['detection_scores'],
          'detection_classes': outputs['detection_classes'],
          'num_detections': outputs['num_detections'],
          'source_id': labels['groundtruths']['source_id'],
          'image_info': labels['image_info']
      }
      logs.update(
          {self.wod_metric.name: (labels['groundtruths'], wod_model_outputs)})

    if metrics:
      for m in metrics:
        m.update_state(all_losses[m.name])
        logs.update({m.name: m.result()})

    if (
        hasattr(self.task_config, 'allow_image_summary')
        and self.task_config.allow_image_summary
    ):
      logs.update(
          {'visualization': (tf.cast(features, dtype=tf.float32), outputs)}
      )
    return logs

  def aggregate_logs(self, state=None, step_outputs=None):
    if self._task_config.use_coco_metrics:
      if state is None:
        self.coco_metric.reset_states()
      self.coco_metric.update_state(step_outputs[self.coco_metric.name][0],
                                    step_outputs[self.coco_metric.name][1])
    if self._task_config.use_wod_metrics:
      if state is None:
        self.wod_metric.reset_states()
      self.wod_metric.update_state(step_outputs[self.wod_metric.name][0],
                                   step_outputs[self.wod_metric.name][1])

    if 'visualization' in step_outputs:
      # Update detection state for writing summary if there are artifacts for
      # visualization.
      if state is None:
        state = {}
      state.update(visualization_utils.update_detection_state(step_outputs))

    if state is None:
      # Create an arbitrary state to indicate it's not the first step in the
      # following calls to this function.
      state = True

    return state

  def reduce_aggregated_logs(self, aggregated_logs, global_step=None):
    logs = {}
    if self._task_config.use_coco_metrics:
      logs.update(self.coco_metric.result())
    if self._task_config.use_wod_metrics:
      logs.update(self.wod_metric.result())

    # Add visualization for summary.
    if isinstance(aggregated_logs, dict) and 'image' in aggregated_logs:
      validation_outputs = visualization_utils.visualize_outputs(
          logs=aggregated_logs, task_config=self.task_config
      )
      logs.update(validation_outputs)

    return logs