Spaces:
Runtime error
Runtime error
File size: 11,285 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "bK-7g5sizhg5"
},
"source": [
"## Install Tensorflow-Models packages\n",
"\n",
"The notebook is tested with Google Colab sandbox.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"executionInfo": {
"elapsed": 9737,
"status": "ok",
"timestamp": 1650513863935,
"user": {
"displayName": "Hongkun Yu",
"userId": "12855578661733349593"
},
"user_tz": 420
},
"id": "eTz93_P2dMty",
"outputId": "d147b4b0-954f-4064-d179-bb82bc3ea4fe"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[K |ββββββββββββββββββββββββββββββββ| 21.8 MB 1.6 MB/s \n",
"\u001b[?25h"
]
}
],
"source": [
"!pip3 install -q tf-models-nightly\n",
"# Fix Colab default opencv problem\n",
"!pip3 install -q opencv-python-headless==4.1.2.30\n",
"\n",
"## Colab environment setup. To use a stable TF release version\n",
"## because of the possible breakage in tf-nightly.\n",
"# !pip3 install -U numpy\u003e=1.20\n",
"# !pip3 install -q tensorflow==2.8.0"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"executionInfo": {
"elapsed": 2,
"status": "ok",
"timestamp": 1650513867685,
"user": {
"displayName": "Hongkun Yu",
"userId": "12855578661733349593"
},
"user_tz": 420
},
"id": "GHvGWdCcdQqG",
"outputId": "863683b2-6b70-4de9-98bc-5df743619ad5"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1.21.6\n",
"2.10.0-dev20220420\n"
]
}
],
"source": [
"import numpy as np\n",
"import tensorflow as tf\n",
"print(np.__version__)\n",
"print(tf.__version__)\n",
"\n",
"import tensorflow_models as tfm"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "eYSeQJniztc8"
},
"source": [
"## Check out modules\n",
"\n",
"**Note: As the TensorFlow Models (NLP + Vision) 2.9 release which is tested for this notebook, we partially exported selected modules but the APIs are not stable. Also be aware that, the\n",
"modeling libraries are advancing very fast, so we generally don't guarantee compatability between versions.** "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"executionInfo": {
"elapsed": 206,
"status": "ok",
"timestamp": 1650513874596,
"user": {
"displayName": "Hongkun Yu",
"userId": "12855578661733349593"
},
"user_tz": 420
},
"id": "Y1iEMMGTMrQu",
"outputId": "f3da68d7-ecda-471c-c27b-915b80b55131"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Top-level modules: ['__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', 'core', 'hyperparams', 'nlp', 'optimization', 'utils', 'vision']\n",
"NLP modules: ['__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', 'encoders', 'layers', 'losses', 'models', 'networks', 'ops', 'serving_modules', 'tasks']\n",
"Vision modules: ['__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', 'anchor', 'anchor_generator', 'augment', 'backbones', 'box_matcher', 'box_ops', 'classification_model', 'configs', 'decoders', 'factory', 'factory_3d', 'heads', 'iou_similarity', 'layers', 'mask_ops', 'maskrcnn_model', 'nms', 'preprocess_ops', 'preprocess_ops_3d', 'retinanet_model', 'sampling_ops', 'segmentation_model', 'spatial_transform_ops', 'target_gather', 'video_classification_model']\n"
]
}
],
"source": [
"print(\"Top-level modules: \", dir(tfm))\n",
"print(\"NLP modules: \", dir(tfm.nlp))\n",
"print(\"Vision modules: \", dir(tfm.vision))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "UMHeJmk_1yUf"
},
"source": [
"## Quick Examples\n",
"\n",
"### 1. Use a tfm.nlp Keras layer"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"executionInfo": {
"elapsed": 400,
"status": "ok",
"timestamp": 1650514040957,
"user": {
"displayName": "Hongkun Yu",
"userId": "12855578661733349593"
},
"user_tz": 420
},
"id": "XVWEUozQ1xQY",
"outputId": "5de2aa91-8c38-438e-80b6-481617917c08"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"transformer_encoder_block_1\n",
"tf.Tensor(\n",
"[[[-1.063648 1.4375787 -0.79198956 0.4180589 ]\n",
" [-1.063648 1.4375787 -0.79198956 0.4180589 ]\n",
" [-1.063648 1.4375787 -0.79198956 0.4180589 ]]\n",
"\n",
" [[-1.063648 1.4375787 -0.79198956 0.4180589 ]\n",
" [-1.063648 1.4375787 -0.79198956 0.4180589 ]\n",
" [-1.063648 1.4375787 -0.7919895 0.41805887]]], shape=(2, 3, 4), dtype=float32)\n"
]
}
],
"source": [
"encoder_block = tfm.nlp.layers.TransformerEncoderBlock(\n",
" num_attention_heads=2, inner_dim=10, inner_activation='relu')\n",
"\n",
"batch, length, hidden_size = 2, 3, 4\n",
"qkv_inputs = tf.ones((batch, length, hidden_size), tf.float32)\n",
"attention_mask = None\n",
"outputs = encoder_block([qkv_inputs, attention_mask])\n",
"print(encoder_block.name)\n",
"print(outputs)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "AOOrWjKkSYM0"
},
"source": [
"### 2. Use a tfm.vision Backbone models"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"executionInfo": {
"elapsed": 5979,
"status": "ok",
"timestamp": 1650514078414,
"user": {
"displayName": "Hongkun Yu",
"userId": "12855578661733349593"
},
"user_tz": 420
},
"id": "xwD0UhUdSzNU",
"outputId": "770d46c0-8c71-4f59-ee0b-67430c791380"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING:absl:SpineNet output level out of range [min_level, max_level] = [4, 6] will not be used for further processing.\n",
"WARNING:absl:SpineNet output level out of range [min_level, max_level] = [4, 6] will not be used for further processing.\n",
"WARNING:absl:SpineNet output level out of range [min_level, max_level] = [4, 6] will not be used for further processing.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"spine_net\n",
"{'4': \u003cKerasTensor: shape=(1, 8, 8, 128) dtype=float32 (created by layer 'spine_net')\u003e, '5': \u003cKerasTensor: shape=(1, 4, 4, 128) dtype=float32 (created by layer 'spine_net')\u003e, '6': \u003cKerasTensor: shape=(1, 2, 2, 128) dtype=float32 (created by layer 'spine_net')\u003e}\n"
]
}
],
"source": [
"input_size = 128\n",
"filter_size_scale, block_repeats, resample_alpha, endpoints_num_filters, min_level, max_level = 0.65, 1, 0.5, 128, 4, 6\n",
"input_specs = tf.keras.layers.InputSpec(\n",
" shape=[None, input_size, input_size, 3])\n",
"model = tfm.vision.backbones.SpineNet(\n",
" input_specs=input_specs,\n",
" min_level=min_level,\n",
" max_level=max_level,\n",
" endpoints_num_filters=endpoints_num_filters,\n",
" resample_alpha=resample_alpha,\n",
" block_repeats=block_repeats,\n",
" filter_size_scale=filter_size_scale,\n",
" init_stochastic_depth_rate=0.2,\n",
")\n",
"\n",
"inputs = tf.keras.Input(shape=(input_size, input_size, 3), batch_size=1)\n",
"endpoints = model(inputs)\n",
"print(model.name)\n",
"print(endpoints)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "HHJs4lRlTk8q"
},
"source": [
"### 3. Use Orbit package for advanced training loops"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"executionInfo": {
"elapsed": 215,
"status": "ok",
"timestamp": 1650514185283,
"user": {
"displayName": "Hongkun Yu",
"userId": "12855578661733349593"
},
"user_tz": 420
},
"id": "X4ek9IrJTkP_",
"outputId": "7b31de68-53a0-4b8a-d9ab-109e7c43c933"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Orbit modules: ['AbstractEvaluator', 'AbstractTrainer', 'Action', 'Controller', 'StandardEvaluator', 'StandardEvaluatorOptions', 'StandardTrainer', 'StandardTrainerOptions', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', 'actions', 'controller', 'runner', 'standard_runner', 'utils']\n"
]
}
],
"source": [
"import orbit\n",
"print(\"Orbit modules: \", dir(orbit))"
]
}
],
"metadata": {
"colab": {
"collapsed_sections": [],
"name": "tensorflow_models_pypi",
"provenance": [
{
"file_id": "1dm1dUZ2Bo6S6Zom7GTQrIG78Xz7iFeZY",
"timestamp": 1650514452505
}
]
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|