File size: 13,921 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93528c6
5672777
 
93528c6
 
 
 
 
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""TFM common training driver library."""
# pytype: disable=attribute-error
import os
import tempfile
from typing import Any, List, Mapping, Optional, Tuple

# Import libraries

from absl import logging
import orbit
import tensorflow as tf, tf_keras

from official.core import actions
from official.core import base_task
from official.core import base_trainer
from official.core import config_definitions
from official.core import train_utils

maybe_create_best_ckpt_exporter = train_utils.maybe_create_best_ckpt_exporter


class OrbitExperimentRunner:
  """Runs experiment with Orbit training loop.

  The default experiment runner for model garden experiments. User can
  customize the experiment pipeline by subclassing this class and replacing
  components or functions.

  For example, an experiment runner with customized checkpoint manager:

  ```python
  class MyExpRunnerWithExporter(OrbitExperimentRunner):
    def _maybe_build_checkpoint_manager(sefl):
      # Replaces the default CheckpointManger with a customized one.
      return MyCheckpointManager(*args)

  # In user code, instead of the orginal
  # `OrbitExperimentRunner(..).run(mode)`, now user can do:
  MyExpRunnerWithExporter(**needed_kwargs).run(mode)
  ```

  Similar override can be done to other components.
  """

  def __init__(
      self,
      distribution_strategy: tf.distribute.Strategy,
      task: base_task.Task,
      mode: str,
      params: config_definitions.ExperimentConfig,
      model_dir: str,
      run_post_eval: bool = False,
      save_summary: bool = True,
      train_actions: Optional[List[orbit.Action]] = None,
      eval_actions: Optional[List[orbit.Action]] = None,
      trainer: Optional[base_trainer.Trainer] = None,
      controller_cls=orbit.Controller,
      summary_manager: Optional[orbit.utils.SummaryManager] = None,
      eval_summary_manager: Optional[orbit.utils.SummaryManager] = None,
      enable_async_checkpointing: bool = False,
  ):
    """Constructor.

    Args:
      distribution_strategy: A distribution strategy.
      task: A Task instance.
      mode: A 'str', specifying the mode. Can be 'train', 'eval',
        'train_and_eval' or 'continuous_eval'.
      params: ExperimentConfig instance.
      model_dir: A 'str', a path to store model checkpoints and summaries.
      run_post_eval: Whether to run post eval once after training, metrics logs
        are returned.
      save_summary: Whether to save train and validation summary.
      train_actions: Optional list of Orbit train actions.
      eval_actions: Optional list of Orbit eval actions.
      trainer: the base_trainer.Trainer instance. It should be created within
        the strategy.scope().
      controller_cls: The controller class to manage the train and eval process.
        Must be a orbit.Controller subclass.
      summary_manager: Instance of the summary manager to override default
        summary manager.
      eval_summary_manager: Instance of the eval summary manager to override
        default eval summary manager.
      enable_async_checkpointing: Optional boolean indicating whether to enable
        async checkpoint saving.
    """
    self.strategy = distribution_strategy or tf.distribute.get_strategy()
    self._params = params
    self._model_dir = model_dir
    self._mode = mode
    self._run_post_eval = run_post_eval

    self._trainer = trainer or self._build_trainer(
        task,
        train='train' in mode,
        evaluate=('eval' in mode) or run_post_eval)
    assert self.trainer is not None
    self._checkpoint_manager = self._maybe_build_checkpoint_manager()
    self._summary_manager = summary_manager
    self._eval_summary_manager = eval_summary_manager
    self._controller = self._build_controller(
        trainer=self.trainer if 'train' in mode else None,
        evaluator=self.trainer,
        save_summary=save_summary,
        train_actions=train_actions,
        eval_actions=eval_actions,
        controller_cls=controller_cls,
        enable_async_checkpointing=enable_async_checkpointing)

  @property
  def params(self) -> config_definitions.ExperimentConfig:
    """The whole experiment parameters object."""
    return self._params

  @property
  def model_dir(self) -> str:
    """Path to the model folder, which stores checkpoints, params, log, etc."""
    return self._model_dir

  @property
  def trainer(self) -> base_trainer.Trainer:
    """The underlying Orbit Trainer object."""
    return self._trainer

  @property
  def checkpoint_manager(self) -> Optional[tf.train.CheckpointManager]:
    """The CheckpointManager that stores the checkpoints in a train job."""
    return self._checkpoint_manager

  @property
  def controller(self) -> orbit.Controller:
    """The Orbit controller object."""
    return self._controller

  def _build_trainer(self, task: base_task.Task, train: bool,
                     evaluate: bool) -> base_trainer.Trainer:
    """Create trainer."""
    with self.strategy.scope():
      trainer = train_utils.create_trainer(
          self.params,
          task,
          train=train,
          evaluate=evaluate,
          checkpoint_exporter=self._build_best_checkpoint_exporter())
    return trainer

  def _build_best_checkpoint_exporter(self):
    return maybe_create_best_ckpt_exporter(self.params, self.model_dir)

  def _maybe_build_checkpoint_manager(
      self) -> Optional[tf.train.CheckpointManager]:
    """Maybe create a CheckpointManager."""
    assert self.trainer is not None
    if self.trainer.checkpoint:
      if self.model_dir is None:
        raise ValueError('model_dir must be specified, but got None')

      if (not self.strategy) or self.strategy.extended.should_checkpoint:
        ckpt_path = self.model_dir
        max_to_keep = self.params.trainer.max_to_keep
      else:
        # In multi worker training we need every worker to save checkpoint,
        # because variables can trigger synchronization on read and
        # synchronization needs all workers to participate. To avoid workers
        # overriding each other we save to a temporary directory on non-chief
        # workers.
        ckpt_path = tempfile.mkdtemp()
        max_to_keep = 1

      checkpoint_manager = tf.train.CheckpointManager(
          self.trainer.checkpoint,
          directory=ckpt_path,
          max_to_keep=max_to_keep,
          step_counter=self.trainer.global_step,
          checkpoint_interval=self.params.trainer.checkpoint_interval,
          init_fn=self.trainer.initialize)
    else:
      checkpoint_manager = None
    return checkpoint_manager

  def _build_controller(
      self,
      trainer,
      evaluator,
      save_summary: bool = True,
      train_actions: Optional[List[orbit.Action]] = None,
      eval_actions: Optional[List[orbit.Action]] = None,
      controller_cls=orbit.Controller,
      enable_async_checkpointing: bool = False,
  ) -> orbit.Controller:
    """Builds a Orbit controler."""
    train_actions = [] if not train_actions else train_actions
    if trainer:
      checkpoint_manager = self.checkpoint_manager
      assert checkpoint_manager, 'Checkpoint manager required but undefined.'
      train_actions += actions.get_train_actions(
          self.params,
          trainer,
          self.model_dir,
          checkpoint_manager=checkpoint_manager,
      )

    eval_actions = [] if not eval_actions else eval_actions
    if evaluator:
      eval_actions += actions.get_eval_actions(self.params, evaluator,
                                               self.model_dir)

    if save_summary:
      eval_summary_dir = os.path.join(
          self.model_dir, self.params.trainer.validation_summary_subdir
      )
    else:
      eval_summary_dir = None

    controller = controller_cls(
        strategy=self.strategy,
        trainer=trainer,
        evaluator=evaluator,
        global_step=self.trainer.global_step,
        steps_per_loop=self.params.trainer.steps_per_loop,
        checkpoint_manager=self.checkpoint_manager,
        enable_async_checkpointing=enable_async_checkpointing,
        summary_dir=os.path.join(self.model_dir, 'train')
        if (save_summary)
        else None,
        eval_summary_dir=eval_summary_dir,
        summary_interval=self.params.trainer.summary_interval
        if (save_summary)
        else None,
        train_actions=train_actions,
        eval_actions=eval_actions,
        summary_manager=self._summary_manager
        if hasattr(self, '_summary_manager')
        else None,
        eval_summary_manager=self._eval_summary_manager
        if hasattr(self, '_eval_summary_manager')
        else None,
    )
    return controller

  def run(self) -> Tuple[tf_keras.Model, Mapping[str, Any]]:
    """Run experiments by mode.

    Returns:
      A 2-tuple of (model, eval_logs).
        model: `tf_keras.Model` instance.
        eval_logs: returns eval metrics logs when run_post_eval is set to True,
          otherwise, returns {}.
    """
    mode = self._mode
    params = self.params
    logging.info('Starts to execute mode: %s', mode)
    with self.strategy.scope():
      if mode == 'train' or mode == 'train_and_post_eval':
        self.controller.train(steps=params.trainer.train_steps)
      elif mode == 'train_and_eval':
        self.controller.train_and_evaluate(
            train_steps=params.trainer.train_steps,
            eval_steps=params.trainer.validation_steps,
            eval_interval=params.trainer.validation_interval)
      elif mode == 'eval':
        self.controller.evaluate(steps=params.trainer.validation_steps)
      elif mode == 'continuous_eval':

        def timeout_fn():
          if self.trainer.global_step.numpy() >= params.trainer.train_steps:
            return True
          return False

        self.controller.evaluate_continuously(
            steps=params.trainer.validation_steps,
            timeout=params.trainer.continuous_eval_timeout,
            timeout_fn=timeout_fn)
      else:
        raise NotImplementedError('The mode is not implemented: %s' % mode)

    num_params = train_utils.try_count_params(self.trainer.model)
    if num_params is not None:
      logging.info('Number of trainable params in model: %f Millions.',
                   num_params / 10.**6)

    flops = train_utils.try_count_flops(self.trainer.model)
    if flops is not None:
      logging.info('FLOPs (multi-adds) in model: %f Billions.',
                   flops / 10.**9 / 2)

    if self._run_post_eval or mode == 'train_and_post_eval':
      with self.strategy.scope():
        return self.trainer.model, self.controller.evaluate(
            steps=params.trainer.validation_steps)
    else:
      return self.trainer.model, {}


def run_experiment(
    distribution_strategy: tf.distribute.Strategy,
    task: base_task.Task,
    mode: str,
    params: config_definitions.ExperimentConfig,
    model_dir: str,
    run_post_eval: bool = False,
    save_summary: bool = True,
    train_actions: Optional[List[orbit.Action]] = None,
    eval_actions: Optional[List[orbit.Action]] = None,
    trainer: Optional[base_trainer.Trainer] = None,
    controller_cls=orbit.Controller,
    summary_manager: Optional[orbit.utils.SummaryManager] = None,
    eval_summary_manager: Optional[orbit.utils.SummaryManager] = None,
    enable_async_checkpointing: bool = False,
) -> Tuple[tf_keras.Model, Mapping[str, Any]]:
  """Runs train/eval configured by the experiment params.

  Args:
    distribution_strategy: A distribution distribution_strategy.
    task: A Task instance.
    mode: A 'str', specifying the mode. Can be 'train', 'eval', 'train_and_eval'
      or 'continuous_eval'.
    params: ExperimentConfig instance.
    model_dir: A 'str', a path to store model checkpoints and summaries.
    run_post_eval: Whether to run post eval once after training, metrics logs
      are returned.
    save_summary: Whether to save train and validation summary.
    train_actions: Optional list of Orbit train actions.
    eval_actions: Optional list of Orbit eval actions.
    trainer: the base_trainer.Trainer instance. It should be created within the
      strategy.scope().
    controller_cls: The controller class to manage the train and eval process.
      Must be a orbit.Controller subclass.
    summary_manager: Instance of the summary manager to override default summary
      manager.
    eval_summary_manager: Instance of the eval summary manager to override
      default eval summary manager.
    enable_async_checkpointing: Optional boolean indicating whether to enable
        async checkpoint saving.

  Returns:
    A 2-tuple of (model, eval_logs).
      model: `tf_keras.Model` instance.
      eval_logs: returns eval metrics logs when run_post_eval is set to True,
        otherwise, returns {}.
  """
  runner = OrbitExperimentRunner(
      distribution_strategy=distribution_strategy,
      task=task,
      mode=mode,
      params=params,
      model_dir=model_dir,
      run_post_eval=run_post_eval,
      save_summary=save_summary,
      train_actions=train_actions,
      eval_actions=eval_actions,
      trainer=trainer,
      controller_cls=controller_cls,
      summary_manager=summary_manager,
      eval_summary_manager=eval_summary_manager,
      enable_async_checkpointing=enable_async_checkpointing,
  )
  return runner.run()