Spaces:
Runtime error
Runtime error
File size: 13,921 Bytes
5672777 93528c6 5672777 93528c6 5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TFM common training driver library."""
# pytype: disable=attribute-error
import os
import tempfile
from typing import Any, List, Mapping, Optional, Tuple
# Import libraries
from absl import logging
import orbit
import tensorflow as tf, tf_keras
from official.core import actions
from official.core import base_task
from official.core import base_trainer
from official.core import config_definitions
from official.core import train_utils
maybe_create_best_ckpt_exporter = train_utils.maybe_create_best_ckpt_exporter
class OrbitExperimentRunner:
"""Runs experiment with Orbit training loop.
The default experiment runner for model garden experiments. User can
customize the experiment pipeline by subclassing this class and replacing
components or functions.
For example, an experiment runner with customized checkpoint manager:
```python
class MyExpRunnerWithExporter(OrbitExperimentRunner):
def _maybe_build_checkpoint_manager(sefl):
# Replaces the default CheckpointManger with a customized one.
return MyCheckpointManager(*args)
# In user code, instead of the orginal
# `OrbitExperimentRunner(..).run(mode)`, now user can do:
MyExpRunnerWithExporter(**needed_kwargs).run(mode)
```
Similar override can be done to other components.
"""
def __init__(
self,
distribution_strategy: tf.distribute.Strategy,
task: base_task.Task,
mode: str,
params: config_definitions.ExperimentConfig,
model_dir: str,
run_post_eval: bool = False,
save_summary: bool = True,
train_actions: Optional[List[orbit.Action]] = None,
eval_actions: Optional[List[orbit.Action]] = None,
trainer: Optional[base_trainer.Trainer] = None,
controller_cls=orbit.Controller,
summary_manager: Optional[orbit.utils.SummaryManager] = None,
eval_summary_manager: Optional[orbit.utils.SummaryManager] = None,
enable_async_checkpointing: bool = False,
):
"""Constructor.
Args:
distribution_strategy: A distribution strategy.
task: A Task instance.
mode: A 'str', specifying the mode. Can be 'train', 'eval',
'train_and_eval' or 'continuous_eval'.
params: ExperimentConfig instance.
model_dir: A 'str', a path to store model checkpoints and summaries.
run_post_eval: Whether to run post eval once after training, metrics logs
are returned.
save_summary: Whether to save train and validation summary.
train_actions: Optional list of Orbit train actions.
eval_actions: Optional list of Orbit eval actions.
trainer: the base_trainer.Trainer instance. It should be created within
the strategy.scope().
controller_cls: The controller class to manage the train and eval process.
Must be a orbit.Controller subclass.
summary_manager: Instance of the summary manager to override default
summary manager.
eval_summary_manager: Instance of the eval summary manager to override
default eval summary manager.
enable_async_checkpointing: Optional boolean indicating whether to enable
async checkpoint saving.
"""
self.strategy = distribution_strategy or tf.distribute.get_strategy()
self._params = params
self._model_dir = model_dir
self._mode = mode
self._run_post_eval = run_post_eval
self._trainer = trainer or self._build_trainer(
task,
train='train' in mode,
evaluate=('eval' in mode) or run_post_eval)
assert self.trainer is not None
self._checkpoint_manager = self._maybe_build_checkpoint_manager()
self._summary_manager = summary_manager
self._eval_summary_manager = eval_summary_manager
self._controller = self._build_controller(
trainer=self.trainer if 'train' in mode else None,
evaluator=self.trainer,
save_summary=save_summary,
train_actions=train_actions,
eval_actions=eval_actions,
controller_cls=controller_cls,
enable_async_checkpointing=enable_async_checkpointing)
@property
def params(self) -> config_definitions.ExperimentConfig:
"""The whole experiment parameters object."""
return self._params
@property
def model_dir(self) -> str:
"""Path to the model folder, which stores checkpoints, params, log, etc."""
return self._model_dir
@property
def trainer(self) -> base_trainer.Trainer:
"""The underlying Orbit Trainer object."""
return self._trainer
@property
def checkpoint_manager(self) -> Optional[tf.train.CheckpointManager]:
"""The CheckpointManager that stores the checkpoints in a train job."""
return self._checkpoint_manager
@property
def controller(self) -> orbit.Controller:
"""The Orbit controller object."""
return self._controller
def _build_trainer(self, task: base_task.Task, train: bool,
evaluate: bool) -> base_trainer.Trainer:
"""Create trainer."""
with self.strategy.scope():
trainer = train_utils.create_trainer(
self.params,
task,
train=train,
evaluate=evaluate,
checkpoint_exporter=self._build_best_checkpoint_exporter())
return trainer
def _build_best_checkpoint_exporter(self):
return maybe_create_best_ckpt_exporter(self.params, self.model_dir)
def _maybe_build_checkpoint_manager(
self) -> Optional[tf.train.CheckpointManager]:
"""Maybe create a CheckpointManager."""
assert self.trainer is not None
if self.trainer.checkpoint:
if self.model_dir is None:
raise ValueError('model_dir must be specified, but got None')
if (not self.strategy) or self.strategy.extended.should_checkpoint:
ckpt_path = self.model_dir
max_to_keep = self.params.trainer.max_to_keep
else:
# In multi worker training we need every worker to save checkpoint,
# because variables can trigger synchronization on read and
# synchronization needs all workers to participate. To avoid workers
# overriding each other we save to a temporary directory on non-chief
# workers.
ckpt_path = tempfile.mkdtemp()
max_to_keep = 1
checkpoint_manager = tf.train.CheckpointManager(
self.trainer.checkpoint,
directory=ckpt_path,
max_to_keep=max_to_keep,
step_counter=self.trainer.global_step,
checkpoint_interval=self.params.trainer.checkpoint_interval,
init_fn=self.trainer.initialize)
else:
checkpoint_manager = None
return checkpoint_manager
def _build_controller(
self,
trainer,
evaluator,
save_summary: bool = True,
train_actions: Optional[List[orbit.Action]] = None,
eval_actions: Optional[List[orbit.Action]] = None,
controller_cls=orbit.Controller,
enable_async_checkpointing: bool = False,
) -> orbit.Controller:
"""Builds a Orbit controler."""
train_actions = [] if not train_actions else train_actions
if trainer:
checkpoint_manager = self.checkpoint_manager
assert checkpoint_manager, 'Checkpoint manager required but undefined.'
train_actions += actions.get_train_actions(
self.params,
trainer,
self.model_dir,
checkpoint_manager=checkpoint_manager,
)
eval_actions = [] if not eval_actions else eval_actions
if evaluator:
eval_actions += actions.get_eval_actions(self.params, evaluator,
self.model_dir)
if save_summary:
eval_summary_dir = os.path.join(
self.model_dir, self.params.trainer.validation_summary_subdir
)
else:
eval_summary_dir = None
controller = controller_cls(
strategy=self.strategy,
trainer=trainer,
evaluator=evaluator,
global_step=self.trainer.global_step,
steps_per_loop=self.params.trainer.steps_per_loop,
checkpoint_manager=self.checkpoint_manager,
enable_async_checkpointing=enable_async_checkpointing,
summary_dir=os.path.join(self.model_dir, 'train')
if (save_summary)
else None,
eval_summary_dir=eval_summary_dir,
summary_interval=self.params.trainer.summary_interval
if (save_summary)
else None,
train_actions=train_actions,
eval_actions=eval_actions,
summary_manager=self._summary_manager
if hasattr(self, '_summary_manager')
else None,
eval_summary_manager=self._eval_summary_manager
if hasattr(self, '_eval_summary_manager')
else None,
)
return controller
def run(self) -> Tuple[tf_keras.Model, Mapping[str, Any]]:
"""Run experiments by mode.
Returns:
A 2-tuple of (model, eval_logs).
model: `tf_keras.Model` instance.
eval_logs: returns eval metrics logs when run_post_eval is set to True,
otherwise, returns {}.
"""
mode = self._mode
params = self.params
logging.info('Starts to execute mode: %s', mode)
with self.strategy.scope():
if mode == 'train' or mode == 'train_and_post_eval':
self.controller.train(steps=params.trainer.train_steps)
elif mode == 'train_and_eval':
self.controller.train_and_evaluate(
train_steps=params.trainer.train_steps,
eval_steps=params.trainer.validation_steps,
eval_interval=params.trainer.validation_interval)
elif mode == 'eval':
self.controller.evaluate(steps=params.trainer.validation_steps)
elif mode == 'continuous_eval':
def timeout_fn():
if self.trainer.global_step.numpy() >= params.trainer.train_steps:
return True
return False
self.controller.evaluate_continuously(
steps=params.trainer.validation_steps,
timeout=params.trainer.continuous_eval_timeout,
timeout_fn=timeout_fn)
else:
raise NotImplementedError('The mode is not implemented: %s' % mode)
num_params = train_utils.try_count_params(self.trainer.model)
if num_params is not None:
logging.info('Number of trainable params in model: %f Millions.',
num_params / 10.**6)
flops = train_utils.try_count_flops(self.trainer.model)
if flops is not None:
logging.info('FLOPs (multi-adds) in model: %f Billions.',
flops / 10.**9 / 2)
if self._run_post_eval or mode == 'train_and_post_eval':
with self.strategy.scope():
return self.trainer.model, self.controller.evaluate(
steps=params.trainer.validation_steps)
else:
return self.trainer.model, {}
def run_experiment(
distribution_strategy: tf.distribute.Strategy,
task: base_task.Task,
mode: str,
params: config_definitions.ExperimentConfig,
model_dir: str,
run_post_eval: bool = False,
save_summary: bool = True,
train_actions: Optional[List[orbit.Action]] = None,
eval_actions: Optional[List[orbit.Action]] = None,
trainer: Optional[base_trainer.Trainer] = None,
controller_cls=orbit.Controller,
summary_manager: Optional[orbit.utils.SummaryManager] = None,
eval_summary_manager: Optional[orbit.utils.SummaryManager] = None,
enable_async_checkpointing: bool = False,
) -> Tuple[tf_keras.Model, Mapping[str, Any]]:
"""Runs train/eval configured by the experiment params.
Args:
distribution_strategy: A distribution distribution_strategy.
task: A Task instance.
mode: A 'str', specifying the mode. Can be 'train', 'eval', 'train_and_eval'
or 'continuous_eval'.
params: ExperimentConfig instance.
model_dir: A 'str', a path to store model checkpoints and summaries.
run_post_eval: Whether to run post eval once after training, metrics logs
are returned.
save_summary: Whether to save train and validation summary.
train_actions: Optional list of Orbit train actions.
eval_actions: Optional list of Orbit eval actions.
trainer: the base_trainer.Trainer instance. It should be created within the
strategy.scope().
controller_cls: The controller class to manage the train and eval process.
Must be a orbit.Controller subclass.
summary_manager: Instance of the summary manager to override default summary
manager.
eval_summary_manager: Instance of the eval summary manager to override
default eval summary manager.
enable_async_checkpointing: Optional boolean indicating whether to enable
async checkpoint saving.
Returns:
A 2-tuple of (model, eval_logs).
model: `tf_keras.Model` instance.
eval_logs: returns eval metrics logs when run_post_eval is set to True,
otherwise, returns {}.
"""
runner = OrbitExperimentRunner(
distribution_strategy=distribution_strategy,
task=task,
mode=mode,
params=params,
model_dir=model_dir,
run_post_eval=run_post_eval,
save_summary=save_summary,
train_actions=train_actions,
eval_actions=eval_actions,
trainer=trainer,
controller_cls=controller_cls,
summary_manager=summary_manager,
eval_summary_manager=eval_summary_manager,
enable_async_checkpointing=enable_async_checkpointing,
)
return runner.run()
|