Spaces:
Runtime error
Runtime error
File size: 12,613 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Optimizer factory for vision tasks."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from typing import Any, Dict, Optional, Text, Union
from absl import logging
import numpy as np
import tensorflow as tf, tf_keras
from official.legacy.image_classification import learning_rate
from official.legacy.image_classification.configs import base_configs
from official.modeling import optimization
from official.modeling.optimization import legacy_adamw
# pylint: disable=protected-access
FloatTensorLike = Union[tf.Tensor, float, np.float16, np.float32, np.float64]
class Lookahead(tf_keras.optimizers.legacy.Optimizer):
"""This class allows to extend optimizers with the lookahead mechanism.
The mechanism is proposed by Michael R. Zhang et.al in the paper [Lookahead
Optimizer: k steps forward, 1 step back] (https://arxiv.org/abs/1907.08610v1).
The optimizer iteratively updates two sets of weights: the search directions
for weights are chosen by the inner optimizer, while the "slow weights" are
updated each `k` steps based on the directions of the "fast weights" and the
two sets of weights are synchronized. This method improves the learning
stability and lowers the variance of its inner optimizer.
Example of usage:
```python
opt = tf_keras.optimizers.SGD(learning_rate) opt =
tfa.optimizers.Lookahead(opt)
```
"""
def __init__(
self,
optimizer: tf_keras.optimizers.Optimizer,
sync_period: int = 6,
slow_step_size: FloatTensorLike = 0.5,
name: str = 'Lookahead',
**kwargs,
):
"""Wrap optimizer with the lookahead mechanism.
Args:
optimizer: The original optimizer that will be used to compute and apply
the gradients.
sync_period: An integer. The synchronization period of lookahead. Enable
lookahead mechanism by setting it with a positive value.
slow_step_size: A floating point value. The ratio for updating the slow
weights.
name: Optional name for the operations created when applying gradients.
Defaults to "Lookahead".
**kwargs: keyword arguments. Allowed to be {`clipnorm`, `clipvalue`, `lr`,
`decay`}. `clipnorm` is clip gradients by norm; `clipvalue` is clip
gradients by value, `decay` is included for backward compatibility to
allow time inverse decay of learning rate. `lr` is included for backward
compatibility, recommended to use `learning_rate` instead.
"""
super().__init__(name, **kwargs)
if isinstance(optimizer, str):
optimizer = tf_keras.optimizers.get(optimizer)
if not isinstance(
optimizer,
(tf_keras.optimizers.Optimizer, tf_keras.optimizers.legacy.Optimizer),
):
raise TypeError(
'optimizer is not an object of tf_keras.optimizers.Optimizer'
)
self._optimizer = optimizer
self._set_hyper('sync_period', sync_period)
self._set_hyper('slow_step_size', slow_step_size)
self._initialized = False
self._track_trackable(self._optimizer, 'lh_base_optimizer')
def _create_slots(self, var_list):
self._optimizer._create_slots(var_list=var_list) # pylint: disable=protected-access
for var in var_list:
self.add_slot(var, 'slow', initializer=var)
def _create_hypers(self):
self._optimizer._create_hypers() # pylint: disable=protected-access
def _prepare(self, var_list):
return self._optimizer._prepare(var_list=var_list) # pylint: disable=protected-access
def apply_gradients(
self, grads_and_vars, name=None, skip_gradients_aggregation=None, **kwargs
):
self._optimizer._iterations = self.iterations # pylint: disable=protected-access
return super().apply_gradients(grads_and_vars, name, **kwargs)
def _look_ahead_op(self, var):
var_dtype = var.dtype.base_dtype
slow_var = self.get_slot(var, 'slow')
local_step = tf.cast(self.iterations + 1, tf.dtypes.int64)
sync_period = self._get_hyper('sync_period', tf.dtypes.int64)
slow_step_size = self._get_hyper('slow_step_size', var_dtype)
step_back = slow_var + slow_step_size * (var - slow_var)
sync_cond = tf.equal(
tf.math.floordiv(local_step, sync_period) * sync_period, local_step
)
with tf.control_dependencies([step_back]):
slow_update = slow_var.assign(
tf.where(sync_cond, step_back, slow_var),
use_locking=self._use_locking,
)
var_update = var.assign(
tf.where(sync_cond, step_back, var), use_locking=self._use_locking
)
return tf.group(slow_update, var_update)
@property
def weights(self):
return self._weights + self._optimizer.weights
def _resource_apply_dense(self, grad, var):
train_op = self._optimizer._resource_apply_dense(grad, var) # pylint: disable=protected-access
with tf.control_dependencies([train_op]):
look_ahead_op = self._look_ahead_op(var)
return tf.group(train_op, look_ahead_op)
def _resource_apply_sparse(self, grad, var, indices):
train_op = self._optimizer._resource_apply_sparse( # pylint: disable=protected-access
grad, var, indices
)
with tf.control_dependencies([train_op]):
look_ahead_op = self._look_ahead_op(var)
return tf.group(train_op, look_ahead_op)
def get_config(self):
config = {
'optimizer': tf_keras.optimizers.serialize(self._optimizer),
'sync_period': self._serialize_hyperparameter('sync_period'),
'slow_step_size': self._serialize_hyperparameter('slow_step_size'),
}
base_config = super().get_config()
return {**base_config, **config}
@property
def learning_rate(self):
return self._optimizer._get_hyper('learning_rate')
@learning_rate.setter
def learning_rate(self, value):
self._optimizer._set_hyper('learning_rate', value)
@property
def lr(self):
return self.learning_rate
@lr.setter
def lr(self, lr):
self.learning_rate = lr
@classmethod
def from_config(cls, config, custom_objects=None):
optimizer = tf_keras.optimizers.deserialize(
config.pop('optimizer'), custom_objects=custom_objects
)
return cls(optimizer, **config)
def build_optimizer(
optimizer_name: Text,
base_learning_rate: tf_keras.optimizers.schedules.LearningRateSchedule,
params: Dict[Text, Any],
model: Optional[tf_keras.Model] = None):
"""Build the optimizer based on name.
Args:
optimizer_name: String representation of the optimizer name. Examples: sgd,
momentum, rmsprop.
base_learning_rate: `tf_keras.optimizers.schedules.LearningRateSchedule`
base learning rate.
params: String -> Any dictionary representing the optimizer params. This
should contain optimizer specific parameters such as `base_learning_rate`,
`decay`, etc.
model: The `tf_keras.Model`. This is used for the shadow copy if using
`ExponentialMovingAverage`.
Returns:
A tf_keras.optimizers.legacy.Optimizer.
Raises:
ValueError if the provided optimizer_name is not supported.
"""
optimizer_name = optimizer_name.lower()
logging.info('Building %s optimizer with params %s', optimizer_name, params)
if optimizer_name == 'sgd':
logging.info('Using SGD optimizer')
nesterov = params.get('nesterov', False)
optimizer = tf_keras.optimizers.legacy.SGD(
learning_rate=base_learning_rate, nesterov=nesterov)
elif optimizer_name == 'momentum':
logging.info('Using momentum optimizer')
nesterov = params.get('nesterov', False)
optimizer = tf_keras.optimizers.legacy.SGD(
learning_rate=base_learning_rate,
momentum=params['momentum'],
nesterov=nesterov)
elif optimizer_name == 'rmsprop':
logging.info('Using RMSProp')
rho = params.get('decay', None) or params.get('rho', 0.9)
momentum = params.get('momentum', 0.9)
epsilon = params.get('epsilon', 1e-07)
optimizer = tf_keras.optimizers.legacy.RMSprop(
learning_rate=base_learning_rate,
rho=rho,
momentum=momentum,
epsilon=epsilon)
elif optimizer_name == 'adam':
logging.info('Using Adam')
beta_1 = params.get('beta_1', 0.9)
beta_2 = params.get('beta_2', 0.999)
epsilon = params.get('epsilon', 1e-07)
optimizer = tf_keras.optimizers.legacy.Adam(
learning_rate=base_learning_rate,
beta_1=beta_1,
beta_2=beta_2,
epsilon=epsilon)
elif optimizer_name == 'adamw':
logging.info('Using AdamW')
weight_decay = params.get('weight_decay', 0.01)
beta_1 = params.get('beta_1', 0.9)
beta_2 = params.get('beta_2', 0.999)
epsilon = params.get('epsilon', 1e-07)
optimizer = legacy_adamw.AdamWeightDecay(
learning_rate=base_learning_rate,
weight_decay_rate=weight_decay,
beta_1=beta_1,
beta_2=beta_2,
epsilon=epsilon,
)
else:
raise ValueError('Unknown optimizer %s' % optimizer_name)
if params.get('lookahead', None):
logging.info('Using lookahead optimizer.')
optimizer = Lookahead(optimizer)
# Moving average should be applied last, as it's applied at test time
moving_average_decay = params.get('moving_average_decay', 0.)
if moving_average_decay is not None and moving_average_decay > 0.:
if model is None:
raise ValueError(
'`model` must be provided if using `ExponentialMovingAverage`.')
logging.info('Including moving average decay.')
optimizer = optimization.ExponentialMovingAverage(
optimizer=optimizer, average_decay=moving_average_decay)
optimizer.shadow_copy(model)
return optimizer
def build_learning_rate(params: base_configs.LearningRateConfig,
batch_size: Optional[int] = None,
train_epochs: Optional[int] = None,
train_steps: Optional[int] = None):
"""Build the learning rate given the provided configuration."""
decay_type = params.name
base_lr = params.initial_lr
decay_rate = params.decay_rate
if params.decay_epochs is not None:
decay_steps = params.decay_epochs * train_steps
else:
decay_steps = 0
if params.warmup_epochs is not None:
warmup_steps = params.warmup_epochs * train_steps
else:
warmup_steps = 0
lr_multiplier = params.scale_by_batch_size
if lr_multiplier and lr_multiplier > 0:
# Scale the learning rate based on the batch size and a multiplier
base_lr *= lr_multiplier * batch_size
logging.info(
'Scaling the learning rate based on the batch size '
'multiplier. New base_lr: %f', base_lr)
if decay_type == 'exponential':
logging.info(
'Using exponential learning rate with: '
'initial_learning_rate: %f, decay_steps: %d, '
'decay_rate: %f', base_lr, decay_steps, decay_rate)
lr = tf_keras.optimizers.schedules.ExponentialDecay(
initial_learning_rate=base_lr,
decay_steps=decay_steps,
decay_rate=decay_rate,
staircase=params.staircase)
elif decay_type == 'stepwise':
steps_per_epoch = params.examples_per_epoch // batch_size
boundaries = [boundary * steps_per_epoch for boundary in params.boundaries]
multipliers = [batch_size * multiplier for multiplier in params.multipliers]
logging.info(
'Using stepwise learning rate. Parameters: '
'boundaries: %s, values: %s', boundaries, multipliers)
lr = tf_keras.optimizers.schedules.PiecewiseConstantDecay(
boundaries=boundaries, values=multipliers)
elif decay_type == 'cosine_with_warmup':
lr = learning_rate.CosineDecayWithWarmup(
batch_size=batch_size,
total_steps=train_epochs * train_steps,
warmup_steps=warmup_steps)
if warmup_steps > 0:
if decay_type not in ['cosine_with_warmup']:
logging.info('Applying %d warmup steps to the learning rate',
warmup_steps)
lr = learning_rate.WarmupDecaySchedule(
lr, warmup_steps, warmup_lr=base_lr)
return lr
|