File size: 21,178 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Provides utilities to preprocess images.

Training images are sampled using the provided bounding boxes, and subsequently
cropped to the sampled bounding box. Images are additionally flipped randomly,
then resized to the target output size (without aspect-ratio preservation).

Images used during evaluation are resized (with aspect-ratio preservation) and
centrally cropped.

All images undergo mean color subtraction.

Note that these steps are colloquially referred to as "ResNet preprocessing,"
and they differ from "VGG preprocessing," which does not use bounding boxes
and instead does an aspect-preserving resize followed by random crop during
training. (These both differ from "Inception preprocessing," which introduces
color distortion steps.)

"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

from absl import logging
import tensorflow as tf, tf_keras

DEFAULT_IMAGE_SIZE = 224
NUM_CHANNELS = 3
NUM_CLASSES = 1001

NUM_IMAGES = {
    'train': 1281167,
    'validation': 50000,
}

_NUM_TRAIN_FILES = 1024
_SHUFFLE_BUFFER = 10000

_R_MEAN = 123.68
_G_MEAN = 116.78
_B_MEAN = 103.94
CHANNEL_MEANS = [_R_MEAN, _G_MEAN, _B_MEAN]

# The lower bound for the smallest side of the image for aspect-preserving
# resizing. For example, if an image is 500 x 1000, it will be resized to
# _RESIZE_MIN x (_RESIZE_MIN * 2).
_RESIZE_MIN = 256


def process_record_dataset(dataset,
                           is_training,
                           batch_size,
                           shuffle_buffer,
                           parse_record_fn,
                           dtype=tf.float32,
                           datasets_num_private_threads=None,
                           drop_remainder=False,
                           tf_data_experimental_slack=False):
  """Given a Dataset with raw records, return an iterator over the records.

  Args:
    dataset: A Dataset representing raw records
    is_training: A boolean denoting whether the input is for training.
    batch_size: The number of samples per batch.
    shuffle_buffer: The buffer size to use when shuffling records. A larger
      value results in better randomness, but smaller values reduce startup time
      and use less memory.
    parse_record_fn: A function that takes a raw record and returns the
      corresponding (image, label) pair.
    dtype: Data type to use for images/features.
    datasets_num_private_threads: Number of threads for a private threadpool
      created for all datasets computation.
    drop_remainder: A boolean indicates whether to drop the remainder of the
      batches. If True, the batch dimension will be static.
    tf_data_experimental_slack: Whether to enable tf.data's `experimental_slack`
      option.

  Returns:
    Dataset of (image, label) pairs ready for iteration.
  """
  # Defines a specific size thread pool for tf.data operations.
  if datasets_num_private_threads:
    options = tf.data.Options()
    options.experimental_threading.private_threadpool_size = (
        datasets_num_private_threads)
    dataset = dataset.with_options(options)
    logging.info('datasets_num_private_threads: %s',
                 datasets_num_private_threads)

  if is_training:
    # Shuffles records before repeating to respect epoch boundaries.
    dataset = dataset.shuffle(buffer_size=shuffle_buffer)
    # Repeats the dataset for the number of epochs to train.
    dataset = dataset.repeat()

  # Parses the raw records into images and labels.
  dataset = dataset.map(
      lambda value: parse_record_fn(value, is_training, dtype),
      num_parallel_calls=tf.data.experimental.AUTOTUNE)
  dataset = dataset.batch(batch_size, drop_remainder=drop_remainder)

  # Operations between the final prefetch and the get_next call to the iterator
  # will happen synchronously during run time. We prefetch here again to
  # background all of the above processing work and keep it out of the
  # critical training path. Setting buffer_size to tf.data.experimental.AUTOTUNE
  # allows DistributionStrategies to adjust how many batches to fetch based
  # on how many devices are present.
  dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)

  options = tf.data.Options()
  options.experimental_slack = tf_data_experimental_slack
  dataset = dataset.with_options(options)

  return dataset


def get_filenames(is_training, data_dir):
  """Return filenames for dataset."""
  if is_training:
    return [
        os.path.join(data_dir, 'train-%05d-of-01024' % i)
        for i in range(_NUM_TRAIN_FILES)
    ]
  else:
    return [
        os.path.join(data_dir, 'validation-%05d-of-00128' % i)
        for i in range(128)
    ]


def parse_example_proto(example_serialized):
  """Parses an Example proto containing a training example of an image.

  The output of the build_image_data.py image preprocessing script is a dataset
  containing serialized Example protocol buffers. Each Example proto contains
  the following fields (values are included as examples):

    image/height: 462
    image/width: 581
    image/colorspace: 'RGB'
    image/channels: 3
    image/class/label: 615
    image/class/synset: 'n03623198'
    image/class/text: 'knee pad'
    image/object/bbox/xmin: 0.1
    image/object/bbox/xmax: 0.9
    image/object/bbox/ymin: 0.2
    image/object/bbox/ymax: 0.6
    image/object/bbox/label: 615
    image/format: 'JPEG'
    image/filename: 'ILSVRC2012_val_00041207.JPEG'
    image/encoded: <JPEG encoded string>

  Args:
    example_serialized: scalar Tensor tf.string containing a serialized Example
      protocol buffer.

  Returns:
    image_buffer: Tensor tf.string containing the contents of a JPEG file.
    label: Tensor tf.int32 containing the label.
    bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords]
      where each coordinate is [0, 1) and the coordinates are arranged as
      [ymin, xmin, ymax, xmax].
  """
  # Dense features in Example proto.
  feature_map = {
      'image/encoded':
          tf.io.FixedLenFeature([], dtype=tf.string, default_value=''),
      'image/class/label':
          tf.io.FixedLenFeature([], dtype=tf.int64, default_value=-1),
      'image/class/text':
          tf.io.FixedLenFeature([], dtype=tf.string, default_value=''),
  }
  sparse_float32 = tf.io.VarLenFeature(dtype=tf.float32)
  # Sparse features in Example proto.
  feature_map.update({
      k: sparse_float32 for k in [
          'image/object/bbox/xmin', 'image/object/bbox/ymin',
          'image/object/bbox/xmax', 'image/object/bbox/ymax'
      ]
  })

  features = tf.io.parse_single_example(
      serialized=example_serialized, features=feature_map)
  label = tf.cast(features['image/class/label'], dtype=tf.int32)

  xmin = tf.expand_dims(features['image/object/bbox/xmin'].values, 0)
  ymin = tf.expand_dims(features['image/object/bbox/ymin'].values, 0)
  xmax = tf.expand_dims(features['image/object/bbox/xmax'].values, 0)
  ymax = tf.expand_dims(features['image/object/bbox/ymax'].values, 0)

  # Note that we impose an ordering of (y, x) just to make life difficult.
  bbox = tf.concat([ymin, xmin, ymax, xmax], 0)

  # Force the variable number of bounding boxes into the shape
  # [1, num_boxes, coords].
  bbox = tf.expand_dims(bbox, 0)
  bbox = tf.transpose(a=bbox, perm=[0, 2, 1])

  return features['image/encoded'], label, bbox


def parse_record(raw_record, is_training, dtype):
  """Parses a record containing a training example of an image.

  The input record is parsed into a label and image, and the image is passed
  through preprocessing steps (cropping, flipping, and so on).

  Args:
    raw_record: scalar Tensor tf.string containing a serialized Example protocol
      buffer.
    is_training: A boolean denoting whether the input is for training.
    dtype: data type to use for images/features.

  Returns:
    Tuple with processed image tensor in a channel-last format and
    one-hot-encoded label tensor.
  """
  image_buffer, label, bbox = parse_example_proto(raw_record)

  image = preprocess_image(
      image_buffer=image_buffer,
      bbox=bbox,
      output_height=DEFAULT_IMAGE_SIZE,
      output_width=DEFAULT_IMAGE_SIZE,
      num_channels=NUM_CHANNELS,
      is_training=is_training)
  image = tf.cast(image, dtype)

  # Subtract one so that labels are in [0, 1000), and cast to float32 for
  # Keras model.
  label = tf.cast(
      tf.cast(tf.reshape(label, shape=[1]), dtype=tf.int32) - 1,
      dtype=tf.float32)
  return image, label


def get_parse_record_fn(use_keras_image_data_format=False):
  """Get a function for parsing the records, accounting for image format.

  This is useful by handling different types of Keras models. For instance,
  the current resnet_model.resnet50 input format is always channel-last,
  whereas the keras_applications mobilenet input format depends on
  tf_keras.backend.image_data_format(). We should set
  use_keras_image_data_format=False for the former and True for the latter.

  Args:
    use_keras_image_data_format: A boolean denoting whether data format is keras
      backend image data format. If False, the image format is channel-last. If
      True, the image format matches tf_keras.backend.image_data_format().

  Returns:
    Function to use for parsing the records.
  """

  def parse_record_fn(raw_record, is_training, dtype):
    image, label = parse_record(raw_record, is_training, dtype)
    if use_keras_image_data_format:
      if tf_keras.backend.image_data_format() == 'channels_first':
        image = tf.transpose(image, perm=[2, 0, 1])
    return image, label

  return parse_record_fn


def input_fn(is_training,
             data_dir,
             batch_size,
             dtype=tf.float32,
             datasets_num_private_threads=None,
             parse_record_fn=parse_record,
             input_context=None,
             drop_remainder=False,
             tf_data_experimental_slack=False,
             training_dataset_cache=False,
             filenames=None):
  """Input function which provides batches for train or eval.

  Args:
    is_training: A boolean denoting whether the input is for training.
    data_dir: The directory containing the input data.
    batch_size: The number of samples per batch.
    dtype: Data type to use for images/features
    datasets_num_private_threads: Number of private threads for tf.data.
    parse_record_fn: Function to use for parsing the records.
    input_context: A `tf.distribute.InputContext` object passed in by
      `tf.distribute.Strategy`.
    drop_remainder: A boolean indicates whether to drop the remainder of the
      batches. If True, the batch dimension will be static.
    tf_data_experimental_slack: Whether to enable tf.data's `experimental_slack`
      option.
    training_dataset_cache: Whether to cache the training dataset on workers.
      Typically used to improve training performance when training data is in
      remote storage and can fit into worker memory.
    filenames: Optional field for providing the file names of the TFRecords.

  Returns:
    A dataset that can be used for iteration.
  """
  if filenames is None:
    filenames = get_filenames(is_training, data_dir)
  dataset = tf.data.Dataset.from_tensor_slices(filenames)

  if input_context:
    logging.info(
        'Sharding the dataset: input_pipeline_id=%d num_input_pipelines=%d',
        input_context.input_pipeline_id, input_context.num_input_pipelines)
    dataset = dataset.shard(input_context.num_input_pipelines,
                            input_context.input_pipeline_id)

  if is_training:
    # Shuffle the input files
    dataset = dataset.shuffle(buffer_size=_NUM_TRAIN_FILES)

  # Convert to individual records.
  # cycle_length = 10 means that up to 10 files will be read and deserialized in
  # parallel. You may want to increase this number if you have a large number of
  # CPU cores.
  dataset = dataset.interleave(
      tf.data.TFRecordDataset,
      cycle_length=10,
      num_parallel_calls=tf.data.experimental.AUTOTUNE)

  if is_training and training_dataset_cache:
    # Improve training performance when training data is in remote storage and
    # can fit into worker memory.
    dataset = dataset.cache()

  return process_record_dataset(
      dataset=dataset,
      is_training=is_training,
      batch_size=batch_size,
      shuffle_buffer=_SHUFFLE_BUFFER,
      parse_record_fn=parse_record_fn,
      dtype=dtype,
      datasets_num_private_threads=datasets_num_private_threads,
      drop_remainder=drop_remainder,
      tf_data_experimental_slack=tf_data_experimental_slack,
  )


def _decode_crop_and_flip(image_buffer, bbox, num_channels):
  """Crops the given image to a random part of the image, and randomly flips.

  We use the fused decode_and_crop op, which performs better than the two ops
  used separately in series, but note that this requires that the image be
  passed in as an un-decoded string Tensor.

  Args:
    image_buffer: scalar string Tensor representing the raw JPEG image buffer.
    bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords]
      where each coordinate is [0, 1) and the coordinates are arranged as [ymin,
      xmin, ymax, xmax].
    num_channels: Integer depth of the image buffer for decoding.

  Returns:
    3-D tensor with cropped image.

  """
  # A large fraction of image datasets contain a human-annotated bounding box
  # delineating the region of the image containing the object of interest.  We
  # choose to create a new bounding box for the object which is a randomly
  # distorted version of the human-annotated bounding box that obeys an
  # allowed range of aspect ratios, sizes and overlap with the human-annotated
  # bounding box. If no box is supplied, then we assume the bounding box is
  # the entire image.
  sample_distorted_bounding_box = tf.image.sample_distorted_bounding_box(
      tf.image.extract_jpeg_shape(image_buffer),
      bounding_boxes=bbox,
      min_object_covered=0.1,
      aspect_ratio_range=[0.75, 1.33],
      area_range=[0.05, 1.0],
      max_attempts=100,
      use_image_if_no_bounding_boxes=True)
  bbox_begin, bbox_size, _ = sample_distorted_bounding_box

  # Reassemble the bounding box in the format the crop op requires.
  offset_y, offset_x, _ = tf.unstack(bbox_begin)
  target_height, target_width, _ = tf.unstack(bbox_size)
  crop_window = tf.stack([offset_y, offset_x, target_height, target_width])

  # Use the fused decode and crop op here, which is faster than each in series.
  cropped = tf.image.decode_and_crop_jpeg(
      image_buffer, crop_window, channels=num_channels)

  # Flip to add a little more random distortion in.
  cropped = tf.image.random_flip_left_right(cropped)
  return cropped


def _central_crop(image, crop_height, crop_width):
  """Performs central crops of the given image list.

  Args:
    image: a 3-D image tensor
    crop_height: the height of the image following the crop.
    crop_width: the width of the image following the crop.

  Returns:
    3-D tensor with cropped image.
  """
  shape = tf.shape(input=image)
  height, width = shape[0], shape[1]

  amount_to_be_cropped_h = (height - crop_height)
  crop_top = amount_to_be_cropped_h // 2
  amount_to_be_cropped_w = (width - crop_width)
  crop_left = amount_to_be_cropped_w // 2
  return tf.slice(image, [crop_top, crop_left, 0],
                  [crop_height, crop_width, -1])


def _mean_image_subtraction(image, means, num_channels):
  """Subtracts the given means from each image channel.

  For example:
    means = [123.68, 116.779, 103.939]
    image = _mean_image_subtraction(image, means)

  Note that the rank of `image` must be known.

  Args:
    image: a tensor of size [height, width, C].
    means: a C-vector of values to subtract from each channel.
    num_channels: number of color channels in the image that will be distorted.

  Returns:
    the centered image.

  Raises:
    ValueError: If the rank of `image` is unknown, if `image` has a rank other
      than three or if the number of channels in `image` doesn't match the
      number of values in `means`.
  """
  if image.get_shape().ndims != 3:
    raise ValueError('Input must be of size [height, width, C>0]')

  if len(means) != num_channels:
    raise ValueError('len(means) must match the number of channels')

  # We have a 1-D tensor of means; convert to 3-D.
  # Note(b/130245863): we explicitly call `broadcast` instead of simply
  # expanding dimensions for better performance.
  means = tf.broadcast_to(means, tf.shape(image))

  return image - means


def _smallest_size_at_least(height, width, resize_min):
  """Computes new shape with the smallest side equal to `smallest_side`.

  Computes new shape with the smallest side equal to `smallest_side` while
  preserving the original aspect ratio.

  Args:
    height: an int32 scalar tensor indicating the current height.
    width: an int32 scalar tensor indicating the current width.
    resize_min: A python integer or scalar `Tensor` indicating the size of the
      smallest side after resize.

  Returns:
    new_height: an int32 scalar tensor indicating the new height.
    new_width: an int32 scalar tensor indicating the new width.
  """
  resize_min = tf.cast(resize_min, tf.float32)

  # Convert to floats to make subsequent calculations go smoothly.
  height, width = tf.cast(height, tf.float32), tf.cast(width, tf.float32)

  smaller_dim = tf.minimum(height, width)
  scale_ratio = resize_min / smaller_dim

  # Convert back to ints to make heights and widths that TF ops will accept.
  new_height = tf.cast(height * scale_ratio, tf.int32)
  new_width = tf.cast(width * scale_ratio, tf.int32)

  return new_height, new_width


def _aspect_preserving_resize(image, resize_min):
  """Resize images preserving the original aspect ratio.

  Args:
    image: A 3-D image `Tensor`.
    resize_min: A python integer or scalar `Tensor` indicating the size of the
      smallest side after resize.

  Returns:
    resized_image: A 3-D tensor containing the resized image.
  """
  shape = tf.shape(input=image)
  height, width = shape[0], shape[1]

  new_height, new_width = _smallest_size_at_least(height, width, resize_min)

  return _resize_image(image, new_height, new_width)


def _resize_image(image, height, width):
  """Simple wrapper around tf.resize_images.

  This is primarily to make sure we use the same `ResizeMethod` and other
  details each time.

  Args:
    image: A 3-D image `Tensor`.
    height: The target height for the resized image.
    width: The target width for the resized image.

  Returns:
    resized_image: A 3-D tensor containing the resized image. The first two
      dimensions have the shape [height, width].
  """
  return tf.compat.v1.image.resize(
      image, [height, width],
      method=tf.image.ResizeMethod.BILINEAR,
      align_corners=False)


def preprocess_image(image_buffer,
                     bbox,
                     output_height,
                     output_width,
                     num_channels,
                     is_training=False):
  """Preprocesses the given image.

  Preprocessing includes decoding, cropping, and resizing for both training
  and eval images. Training preprocessing, however, introduces some random
  distortion of the image to improve accuracy.

  Args:
    image_buffer: scalar string Tensor representing the raw JPEG image buffer.
    bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords]
      where each coordinate is [0, 1) and the coordinates are arranged as [ymin,
      xmin, ymax, xmax].
    output_height: The height of the image after preprocessing.
    output_width: The width of the image after preprocessing.
    num_channels: Integer depth of the image buffer for decoding.
    is_training: `True` if we're preprocessing the image for training and
      `False` otherwise.

  Returns:
    A preprocessed image.
  """
  if is_training:
    # For training, we want to randomize some of the distortions.
    image = _decode_crop_and_flip(image_buffer, bbox, num_channels)
    image = _resize_image(image, output_height, output_width)
  else:
    # For validation, we want to decode, resize, then just crop the middle.
    image = tf.image.decode_jpeg(image_buffer, channels=num_channels)
    image = _aspect_preserving_resize(image, _RESIZE_MIN)
    image = _central_crop(image, output_height, output_width)

  image.set_shape([output_height, output_width, num_channels])

  return _mean_image_subtraction(image, CHANNEL_MEANS, num_channels)