File size: 7,129 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Implementation of multiheaded attention and self-attention layers."""
import math

import tensorflow as tf, tf_keras

from official.modeling import tf_utils


class Attention(tf_keras.layers.Layer):
  """Multi-headed attention layer."""

  def __init__(self, hidden_size, num_heads, attention_dropout):
    """Initialize Attention.

    Args:
      hidden_size: int, output dim of hidden layer.
      num_heads: int, number of heads to repeat the same attention structure.
      attention_dropout: float, dropout rate inside attention for training.
    """
    if hidden_size % num_heads:
      raise ValueError(
          "Hidden size ({}) must be divisible by the number of heads ({})."
          .format(hidden_size, num_heads))

    super(Attention, self).__init__()
    self.hidden_size = hidden_size
    self.num_heads = num_heads
    self.attention_dropout = attention_dropout

  def build(self, input_shape):
    """Builds the layer."""
    # Layers for linearly projecting the queries, keys, and values.
    size_per_head = self.hidden_size // self.num_heads

    def _glorot_initializer(fan_in, fan_out):
      limit = math.sqrt(6.0 / (fan_in + fan_out))
      return tf_keras.initializers.RandomUniform(minval=-limit, maxval=limit)

    attention_initializer = _glorot_initializer(input_shape.as_list()[-1],
                                                self.hidden_size)
    self.query_dense_layer = tf_keras.layers.EinsumDense(
        "BTE,ENH->BTNH",
        output_shape=(None, self.num_heads, size_per_head),
        kernel_initializer=tf_utils.clone_initializer(attention_initializer),
        bias_axes=None,
        name="query")
    self.key_dense_layer = tf_keras.layers.EinsumDense(
        "BTE,ENH->BTNH",
        output_shape=(None, self.num_heads, size_per_head),
        kernel_initializer=tf_utils.clone_initializer(attention_initializer),
        bias_axes=None,
        name="key")
    self.value_dense_layer = tf_keras.layers.EinsumDense(
        "BTE,ENH->BTNH",
        output_shape=(None, self.num_heads, size_per_head),
        kernel_initializer=tf_utils.clone_initializer(attention_initializer),
        bias_axes=None,
        name="value")

    output_initializer = _glorot_initializer(self.hidden_size, self.hidden_size)
    self.output_dense_layer = tf_keras.layers.EinsumDense(
        "BTNH,NHE->BTE",
        output_shape=(None, self.hidden_size),
        kernel_initializer=output_initializer,
        bias_axes=None,
        name="output_transform")
    super(Attention, self).build(input_shape)

  def get_config(self):
    return {
        "hidden_size": self.hidden_size,
        "num_heads": self.num_heads,
        "attention_dropout": self.attention_dropout,
    }

  def call(self,
           query_input,
           source_input,
           bias,
           training,
           cache=None,
           decode_loop_step=None):
    """Apply attention mechanism to query_input and source_input.

    Args:
      query_input: A tensor with shape [batch_size, length_query, hidden_size].
      source_input: A tensor with shape [batch_size, length_source,
        hidden_size].
      bias: A tensor with shape [batch_size, 1, length_query, length_source],
        the attention bias that will be added to the result of the dot product.
      training: A bool, whether in training mode or not.
      cache: (Used during prediction) A dictionary with tensors containing
        results of previous attentions. The dictionary must have the items:
            {"k": tensor with shape [batch_size, i, heads, dim_per_head],
             "v": tensor with shape [batch_size, i, heads, dim_per_head]} where
               i is the current decoded length for non-padded decode, or max
               sequence length for padded decode.
      decode_loop_step: An integer, step number of the decoding loop. Used only
        for autoregressive inference on TPU.

    Returns:
      Attention layer output with shape [batch_size, length_query, hidden_size]
    """
    # Linearly project the query, key and value using different learned
    # projections. Splitting heads is automatically done during the linear
    # projections --> [batch_size, length, num_heads, dim_per_head].
    query = self.query_dense_layer(query_input)
    key = self.key_dense_layer(source_input)
    value = self.value_dense_layer(source_input)

    if cache is not None:
      # Combine cached keys and values with new keys and values.
      if decode_loop_step is not None:
        cache_k_shape = cache["k"].shape.as_list()
        indices = tf.reshape(
            tf.one_hot(decode_loop_step, cache_k_shape[1], dtype=key.dtype),
            [1, cache_k_shape[1], 1, 1])
        key = cache["k"] + key * indices
        cache_v_shape = cache["v"].shape.as_list()
        indices = tf.reshape(
            tf.one_hot(decode_loop_step, cache_v_shape[1], dtype=value.dtype),
            [1, cache_v_shape[1], 1, 1])
        value = cache["v"] + value * indices
      else:
        key = tf.concat([tf.cast(cache["k"], key.dtype), key], axis=1)
        value = tf.concat([tf.cast(cache["v"], value.dtype), value], axis=1)

      # Update cache
      cache["k"] = key
      cache["v"] = value

    # Scale query to prevent the dot product between query and key from growing
    # too large.
    depth = (self.hidden_size // self.num_heads)
    query *= depth**-0.5

    # Calculate dot product attention
    logits = tf.einsum("BTNH,BFNH->BNFT", key, query)
    logits += bias
    # Note that softmax internally performs math operations using float32
    # for numeric stability. When training with float16, we keep the input
    # and output in float16 for better performance.
    weights = tf.nn.softmax(logits, name="attention_weights")
    if training:
      weights = tf.nn.dropout(weights, rate=self.attention_dropout)
    attention_output = tf.einsum("BNFT,BTNH->BFNH", weights, value)

    # Run the outputs through another linear projection layer. Recombining heads
    # is automatically done --> [batch_size, length, hidden_size]
    attention_output = self.output_dense_layer(attention_output)
    return attention_output


class SelfAttention(Attention):
  """Multiheaded self-attention layer."""

  def call(self,
           query_input,
           bias,
           training,
           cache=None,
           decode_loop_step=None):
    return super(SelfAttention, self).call(query_input, query_input, bias,
                                           training, cache, decode_loop_step)