Spaces:
Runtime error
Runtime error
File size: 13,247 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Input pipeline for the transformer model to read, filter, and batch examples.
Two things to note in the pipeline:
1. Batching scheme
The examples encoded in the TFRecord files contain data in the format:
{"inputs": [variable length array of integers],
"targets": [variable length array of integers]}
Where integers in the arrays refer to tokens in the English and German vocab
file (named `vocab.ende.32768`).
Prior to batching, elements in the dataset are grouped by length (max between
"inputs" and "targets" length). Each group is then batched such that:
group_batch_size * length <= batch_size.
Another way to view batch_size is the maximum number of tokens in each batch.
Once batched, each element in the dataset will have the shape:
{"inputs": [group_batch_size, padded_input_length],
"targets": [group_batch_size, padded_target_length]}
Lengths are padded to the longest "inputs" or "targets" sequence in the batch
(padded_input_length and padded_target_length can be different).
This batching scheme decreases the fraction of padding tokens per training
batch, thus improving the training speed significantly.
2. Shuffling
While training, the dataset is shuffled in two places in the code. The first
is the list of training files. Second, while reading records using
`parallel_interleave`, the `sloppy` argument is used to generate randomness
in the order of the examples.
"""
import os
from absl import logging
import tensorflow as tf, tf_keras
from official.utils.misc import model_helpers
# Buffer size for reading records from a TFRecord file. Each training file is
# 7.2 MB, so 8 MB allows an entire file to be kept in memory.
_READ_RECORD_BUFFER = 8 * 1000 * 1000
# Example grouping constants. Defines length boundaries for each group.
# These values are the defaults used in Tensor2Tensor.
_MIN_BOUNDARY = 8
_BOUNDARY_SCALE = 1.1
def _load_records(filename):
"""Read file and return a dataset of tf.Examples."""
return tf.data.TFRecordDataset(filename, buffer_size=_READ_RECORD_BUFFER)
def _parse_example(serialized_example):
"""Return inputs and targets Tensors from a serialized tf.Example."""
data_fields = {
"inputs": tf.io.VarLenFeature(tf.int64),
"targets": tf.io.VarLenFeature(tf.int64)
}
parsed = tf.io.parse_single_example(serialized_example, data_fields)
inputs = tf.sparse.to_dense(parsed["inputs"])
targets = tf.sparse.to_dense(parsed["targets"])
return inputs, targets
def _filter_max_length(example, max_length=256):
"""Indicates whether the example's length is lower than the maximum length."""
return tf.logical_and(
tf.size(example[0]) <= max_length,
tf.size(example[1]) <= max_length)
def _get_example_length(example):
"""Returns the maximum length between the example inputs and targets."""
length = tf.maximum(tf.shape(example[0])[0], tf.shape(example[1])[0])
return length
def _create_min_max_boundaries(max_length,
min_boundary=_MIN_BOUNDARY,
boundary_scale=_BOUNDARY_SCALE):
"""Create min and max boundary lists up to max_length.
For example, when max_length=24, min_boundary=4 and boundary_scale=2, the
returned values will be:
buckets_min = [0, 4, 8, 16, 24]
buckets_max = [4, 8, 16, 24, 25]
Args:
max_length: The maximum length of example in dataset.
min_boundary: Minimum length in boundary.
boundary_scale: Amount to scale consecutive boundaries in the list.
Returns:
min and max boundary lists
"""
# Create bucket boundaries list by scaling the previous boundary or adding 1
# (to ensure increasing boundary sizes).
bucket_boundaries = []
x = min_boundary
while x < max_length:
bucket_boundaries.append(x)
x = max(x + 1, int(x * boundary_scale))
# Create min and max boundary lists from the initial list.
buckets_min = [0] + bucket_boundaries
buckets_max = bucket_boundaries + [max_length + 1]
return buckets_min, buckets_max
def _batch_examples(dataset, batch_size, max_length):
"""Group examples by similar lengths, and return batched dataset.
Each batch of similar-length examples are padded to the same length, and may
have different number of elements in each batch, such that:
group_batch_size * padded_length <= batch_size.
This decreases the number of padding tokens per batch, which improves the
training speed.
Args:
dataset: Dataset of unbatched examples.
batch_size: Max number of tokens per batch of examples.
max_length: Max number of tokens in an example input or target sequence.
Returns:
Dataset of batched examples with similar lengths.
"""
# Get min and max boundary lists for each example. These are used to calculate
# the `bucket_id`, which is the index at which:
# buckets_min[bucket_id] <= len(example) < buckets_max[bucket_id]
# Note that using both min and max lists improves the performance.
buckets_min, buckets_max = _create_min_max_boundaries(max_length)
# Create list of batch sizes for each bucket_id, so that
# bucket_batch_size[bucket_id] * buckets_max[bucket_id] <= batch_size
bucket_batch_sizes = [int(batch_size) // x for x in buckets_max]
# bucket_id will be a tensor, so convert this list to a tensor as well.
bucket_batch_sizes = tf.constant(bucket_batch_sizes, dtype=tf.int64)
def example_to_bucket_id(example_input, example_target):
"""Return int64 bucket id for this example, calculated based on length."""
seq_length = _get_example_length((example_input, example_target))
# TODO(xunkai): investigate if removing code branching improves performance.
conditions_c = tf.logical_and(
tf.less_equal(buckets_min, seq_length), tf.less(seq_length,
buckets_max))
bucket_id = tf.reduce_min(tf.where(conditions_c))
return bucket_id
def window_size_fn(bucket_id):
"""Return number of examples to be grouped when given a bucket id."""
return bucket_batch_sizes[bucket_id]
def batching_fn(bucket_id, grouped_dataset):
"""Batch and add padding to a dataset of elements with similar lengths."""
bucket_batch_size = window_size_fn(bucket_id)
# Batch the dataset and add padding so that all input sequences in the
# examples have the same length, and all target sequences have the same
# lengths as well. Resulting lengths of inputs and targets can differ.
return grouped_dataset.padded_batch(bucket_batch_size, ([None], [None]))
return dataset.apply(
tf.data.experimental.group_by_window(
key_func=example_to_bucket_id,
reduce_func=batching_fn,
window_size=None,
window_size_func=window_size_fn))
def _read_and_batch_from_files(file_pattern,
batch_size,
max_length,
max_io_parallelism,
shuffle,
repeat,
static_batch=False,
num_replicas=1,
ctx=None):
"""Create dataset where each item is a dict of "inputs" and "targets".
Args:
file_pattern: String used to match the input TFRecord files.
batch_size: Maximum number of tokens per global batch of examples.
max_length: Maximum number of tokens per example
max_io_parallelism: Max number of cpu cores for parallel input processing.
shuffle: If true, randomizes order of elements.
repeat: Number of times to repeat the dataset. If None, the dataset is
repeated forever.
static_batch: Whether the batches in the dataset should have static shapes.
If True, the input is batched so that every batch has the shape
[batch_size // max_length, max_length]. If False, the input is grouped by
length, and batched so that batches may have different
shapes [N, M], where: N * M <= batch_size M <= max_length In general, this
setting should be False. Dynamic shapes allow the inputs to be grouped
so that the number of padding tokens is minimized, and helps model
training. In cases where the input shape must be static (e.g. running on
TPU), this setting should be set to True.
num_replicas: Number of GPUs or other workers. We will generate global
batches, and each global batch is equally divisible by number of replicas.
Currently it is only effective when static_batch==True. TODO: make it
effective when static_batch=False.
ctx: Input context.
Returns:
tf.data.Dataset object containing examples loaded from the files.
"""
dataset = tf.data.Dataset.list_files(file_pattern, shuffle=shuffle)
if ctx and ctx.num_input_pipelines > 1:
logging.info("Shard %d of the dataset.", ctx.input_pipeline_id)
dataset = dataset.shard(ctx.num_input_pipelines, ctx.input_pipeline_id)
# Read files and interleave results. When training, the order of the examples
# will be non-deterministic.
options = tf.data.Options()
options.experimental_deterministic = False
dataset = dataset.interleave(
_load_records,
cycle_length=max_io_parallelism,
num_parallel_calls=tf.data.experimental.AUTOTUNE).with_options(options)
# Parse each tf.Example into a dictionary
# TODO: Look into prefetch_input_elements for performance optimization. # pylint: disable=g-bad-todo
dataset = dataset.map(
_parse_example, num_parallel_calls=tf.data.experimental.AUTOTUNE)
# Remove examples where the input or target length exceeds the maximum length,
dataset = dataset.filter(lambda x, y: _filter_max_length((x, y), max_length))
if static_batch:
dataset = dataset.padded_batch(
# First calculate batch size (token number) per worker, then divide it
# into sentences, and finally expand to a global batch. It could prove
# the global batch divisble for distribution strategy.
int(batch_size // num_replicas // max_length * num_replicas),
([max_length], [max_length]),
drop_remainder=True)
else:
# Group and batch such that each batch has examples of similar length.
# TODO(xunkai): _batch_examples might need to do something special for
# num_replicas.
dataset = _batch_examples(dataset, batch_size, max_length)
dataset = dataset.repeat(repeat)
# Prefetch the next element to improve speed of input pipeline.
dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
return dataset
def _generate_synthetic_data(params):
"""Create synthetic data based on the parameter batch size."""
batch_size = int(params["batch_size"] // params["max_length"])
length = params["max_length"]
dataset = model_helpers.generate_synthetic_data(
input_shape=tf.TensorShape([length]),
input_value=1,
input_dtype=tf.int64,
label_shape=tf.TensorShape([length]),
label_value=1,
label_dtype=tf.int64,
)
if params["static_batch"]:
dataset = dataset.batch(batch_size, drop_remainder=True)
else:
dataset = dataset.padded_batch(batch_size, ([None], [None]))
return dataset
def train_input_fn(params, ctx=None):
"""Load and return dataset of batched examples for use during training."""
file_pattern = os.path.join(params["data_dir"] or "", "*train*")
if params["use_synthetic_data"]:
return _generate_synthetic_data(params)
return _read_and_batch_from_files(
file_pattern,
params["batch_size"],
params["max_length"],
params["max_io_parallelism"],
shuffle=True,
repeat=params["repeat_dataset"],
static_batch=params["static_batch"],
num_replicas=params["num_gpus"],
ctx=ctx)
def eval_input_fn(params, ctx=None):
"""Load and return dataset of batched examples for use during evaluation."""
file_pattern = os.path.join(params["data_dir"] or "", "*dev*")
if params["use_synthetic_data"]:
return _generate_synthetic_data(params)
return _read_and_batch_from_files(
file_pattern,
params["batch_size"],
params["max_length"],
params["max_io_parallelism"],
shuffle=False,
repeat=1,
static_batch=params["static_batch"],
num_replicas=params["num_gpus"],
ctx=ctx)
def map_data_for_transformer_fn(x, y):
"""Maps data for training, and handles weried behaviors for different vers."""
# Will transform input x and targets y into tuple(x, y) as new model inputs.
# For TF v2, the 2nd parameter is omitted to make Keras training work.
return ((x, y),)
|