Spaces:
Runtime error
Runtime error
File size: 7,017 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Functions for calculating loss, accuracy, and other model metrics.
Metrics:
- Padded loss, accuracy, and negative log perplexity. Source:
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/metrics.py
- BLEU approximation. Source:
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/bleu_hook.py
- ROUGE score. Source:
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/rouge.py
"""
import functools
import tensorflow as tf, tf_keras
def _pad_tensors_to_same_length(x, y):
"""Pad x and y so that the results have the same length (second dimension)."""
with tf.name_scope("pad_to_same_length"):
x_length = tf.shape(x)[1]
y_length = tf.shape(y)[1]
max_length = tf.maximum(x_length, y_length)
x = tf.pad(x, [[0, 0], [0, max_length - x_length], [0, 0]])
y = tf.pad(y, [[0, 0], [0, max_length - y_length]])
return x, y
def padded_cross_entropy_loss(logits, labels, smoothing, vocab_size):
"""Calculate cross entropy loss while ignoring padding.
Args:
logits: Tensor of size [batch_size, length_logits, vocab_size]
labels: Tensor of size [batch_size, length_labels]
smoothing: Label smoothing constant, used to determine the on and off values
vocab_size: int size of the vocabulary
Returns:
Returns the cross entropy loss and weight tensors: float32 tensors with
shape [batch_size, max(length_logits, length_labels)]
"""
with tf.name_scope("loss"):
logits, labels = _pad_tensors_to_same_length(logits, labels)
# Calculate smoothing cross entropy
with tf.name_scope("smoothing_cross_entropy"):
confidence = 1.0 - smoothing
low_confidence = (1.0 - confidence) / tf.cast(vocab_size - 1, tf.float32)
soft_targets = tf.one_hot(
tf.cast(labels, tf.int32),
depth=vocab_size,
on_value=confidence,
off_value=low_confidence)
xentropy = tf.nn.softmax_cross_entropy_with_logits(
logits=logits, labels=soft_targets)
# Calculate the best (lowest) possible value of cross entropy, and
# subtract from the cross entropy loss.
normalizing_constant = -(
confidence * tf.math.log(confidence) +
tf.cast(vocab_size - 1, tf.float32) * low_confidence *
tf.math.log(low_confidence + 1e-20))
xentropy -= normalizing_constant
weights = tf.cast(tf.not_equal(labels, 0), tf.float32)
return xentropy * weights, weights
def padded_accuracy(logits, labels):
"""Percentage of times that predictions matches labels on non-0s."""
with tf.name_scope("padded_accuracy"):
logits, labels = _pad_tensors_to_same_length(logits, labels)
weights = tf.cast(tf.not_equal(labels, 0), tf.float32)
outputs = tf.cast(tf.argmax(logits, axis=-1), tf.int32)
padded_labels = tf.cast(labels, tf.int32)
return tf.cast(tf.equal(outputs, padded_labels), tf.float32), weights
def padded_accuracy_topk(logits, labels, k):
"""Percentage of times that top-k predictions matches labels on non-0s."""
with tf.name_scope("padded_accuracy_topk"):
logits, labels = _pad_tensors_to_same_length(logits, labels)
weights = tf.cast(tf.not_equal(labels, 0), tf.float32)
effective_k = tf.minimum(k, tf.shape(logits)[-1])
_, outputs = tf.nn.top_k(logits, k=effective_k)
outputs = tf.cast(outputs, tf.int32)
padded_labels = tf.cast(labels, tf.int32)
padded_labels = tf.expand_dims(padded_labels, axis=-1)
padded_labels += tf.zeros_like(outputs) # Pad to same shape.
same = tf.cast(tf.equal(outputs, padded_labels), tf.float32)
same_topk = tf.reduce_sum(same, axis=-1)
return same_topk, weights
def padded_accuracy_top5(logits, labels):
return padded_accuracy_topk(logits, labels, 5)
def padded_sequence_accuracy(logits, labels):
"""Percentage of times that predictions matches labels everywhere (non-0)."""
with tf.name_scope("padded_sequence_accuracy"):
logits, labels = _pad_tensors_to_same_length(logits, labels)
weights = tf.cast(tf.not_equal(labels, 0), tf.float32)
outputs = tf.cast(tf.argmax(logits, axis=-1), tf.int32)
padded_labels = tf.cast(labels, tf.int32)
not_correct = tf.cast(tf.not_equal(outputs, padded_labels),
tf.float32) * weights
axis = list(range(1, len(outputs.get_shape())))
correct_seq = 1.0 - tf.minimum(1.0, tf.reduce_sum(not_correct, axis=axis))
return correct_seq, tf.constant(1.0)
def padded_neg_log_perplexity(logits, labels, vocab_size):
"""Average log-perplexity excluding padding 0s. No smoothing."""
num, den = padded_cross_entropy_loss(logits, labels, 0, vocab_size)
return -num, den
class MetricLayer(tf_keras.layers.Layer):
"""Custom a layer of metrics for Transformer model."""
def __init__(self, vocab_size):
super(MetricLayer, self).__init__()
self.vocab_size = vocab_size
self.metric_mean_fns = []
def build(self, input_shape):
""""Builds metric layer."""
neg_log_perplexity = functools.partial(
padded_neg_log_perplexity, vocab_size=self.vocab_size)
self.metric_mean_fns = [
(tf_keras.metrics.Mean("accuracy"), padded_accuracy),
(tf_keras.metrics.Mean("accuracy_top5"), padded_accuracy_top5),
(tf_keras.metrics.Mean("accuracy_per_sequence"),
padded_sequence_accuracy),
(tf_keras.metrics.Mean("neg_log_perplexity"), neg_log_perplexity),
]
super(MetricLayer, self).build(input_shape)
def get_config(self):
return {"vocab_size": self.vocab_size}
def call(self, inputs):
logits, targets = inputs[0], inputs[1]
for mean, fn in self.metric_mean_fns:
m = mean(*fn(logits, targets))
self.add_metric(m)
return logits
def transformer_loss(logits, labels, smoothing, vocab_size):
"""Calculates total loss containing cross entropy with padding ignored.
Args:
logits: Tensor of size [batch_size, length_logits, vocab_size]
labels: Tensor of size [batch_size, length_labels]
smoothing: Label smoothing constant, used to determine the on and off values
vocab_size: int size of the vocabulary
Returns:
A scalar float tensor for loss.
"""
xentropy, weights = padded_cross_entropy_loss(logits, labels, smoothing,
vocab_size)
return tf.reduce_sum(xentropy) / tf.reduce_sum(weights)
|