File size: 6,078 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93528c6
5672777
 
93528c6
 
 
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Multitask Evaluator implementation.

The evaluator implements the Orbit `AbstractEvaluator` interface.
"""
from typing import Dict, List, Optional, Union
import gin
import orbit
import tensorflow as tf, tf_keras

from official.core import base_task
from official.core import train_utils
from official.modeling.multitask import base_model


@gin.configurable
class MultiTaskEvaluator(orbit.AbstractEvaluator):
  """Implements the common trainer shared for TensorFlow models."""

  def __init__(
      self,
      eval_tasks: List[base_task.Task],
      model: Union[tf_keras.Model, base_model.MultiTaskBaseModel],
      global_step: Optional[tf.Variable] = None,
      eval_steps: Optional[Dict[str, int]] = None,
      checkpoint_exporter: Optional[train_utils.BestCheckpointExporter] = None):
    """Initialize common trainer for TensorFlow models.

    Args:
      eval_tasks: A list of tasks to evaluate.
      model: tf_keras.Model instance.
      global_step: the global step variable.
      eval_steps: a dictionary of steps to run eval keyed by task names.
      checkpoint_exporter: an object that has the `maybe_export_checkpoint`
        interface.
    """
    # Gets the current distribution strategy. If not inside any strategy scope,
    # it gets a single-replica no-op strategy.
    self._strategy = tf.distribute.get_strategy()
    self._tasks = eval_tasks
    self._model = model
    self._global_step = global_step or orbit.utils.create_global_step()
    self._checkpoint_exporter = checkpoint_exporter
    if hasattr(self.model, "checkpoint_items"):
      checkpoint_items = self.model.checkpoint_items
    else:
      checkpoint_items = {}

    self._checkpoint = tf.train.Checkpoint(
        model=self.model,
        global_step=self.global_step,
        **checkpoint_items)

    self._validation_losses = None
    self._validation_metrics = None

    # Builds per-task datasets.
    self.eval_datasets = {}
    self.eval_steps = eval_steps or {}
    for task in self.tasks:
      self.eval_datasets[task.name] = orbit.utils.make_distributed_dataset(
          self.strategy, task.build_inputs, task.task_config.validation_data)

    # Builds per-task validation loops.
    def get_function(task_name, task):

      task_metrics = self.validation_metrics[task_name]
      task_loss = self.validation_losses[task_name]
      if isinstance(self.model, base_model.MultiTaskBaseModel):
        model = self.model.sub_tasks[task_name]
      else:
        model = self.model

      def step_fn(inputs):
        logs = task.validation_step(inputs, model=model, metrics=task_metrics)
        task_loss.update_state(logs[task.loss])
        return logs

      @tf.function
      def eval_step_fn(iterator):
        distributed_outputs = self.strategy.run(step_fn, args=(next(iterator),))
        return tf.nest.map_structure(self.strategy.experimental_local_results,
                                     distributed_outputs)

      return orbit.utils.create_loop_fn(eval_step_fn)

    self.task_fns = {
        task.name: get_function(task.name, task) for task in self.tasks
    }

  @property
  def strategy(self):
    return self._strategy

  @property
  def tasks(self):
    return self._tasks

  @property
  def model(self):
    return self._model

  @property
  def global_step(self):
    return self._global_step

  @property
  def validation_losses(self):
    """Accesses the validation loss metric object."""
    if self._validation_losses is None:
      # Builds the per-task metrics and losses.
      self._validation_losses = {}
      for task in self.tasks:
        self._validation_losses[task.name] = tf_keras.metrics.Mean(
            "validation_loss", dtype=tf.float32)
    return self._validation_losses

  @property
  def validation_metrics(self):
    """Accesses all validation metric metric objects."""
    if self._validation_metrics is None:
      # Builds the per-task metrics and losses.
      self._validation_metrics = {}
      for task in self.tasks:
        self._validation_metrics[task.name] = task.build_metrics(training=False)
    return self._validation_metrics

  @property
  def checkpoint(self):
    """Accesses the training checkpoint."""
    return self._checkpoint

  def evaluate(self, num_steps: tf.Tensor):
    """Performs evaluation for each `EvalTask`."""
    for metric in self.validation_losses.values():
      metric.reset_states()
    for metrics in self.validation_metrics.values():
      for metric in metrics:
        metric.reset_states()
    results = {}
    eval_iters = tf.nest.map_structure(iter, self.eval_datasets)

    for task in self.tasks:
      outputs = None
      name = task.name
      eval_iter = eval_iters[name]
      task_eval_steps = self.eval_steps.get(name, None) or num_steps
      outputs = self.task_fns[name](
          eval_iter,
          task_eval_steps,
          state=outputs,
          reduce_fn=task.aggregate_logs)
      task_metrics = self.validation_metrics[name]
      task_loss = self.validation_losses[name]
      logs = {}
      for metric in task_metrics + [task_loss]:
        logs[metric.name] = metric.result()
      if outputs:
        metrics = task.reduce_aggregated_logs(
            outputs, global_step=self.global_step)
        logs.update(metrics)
      results[name] = logs

    if self._checkpoint_exporter:
      self._checkpoint_exporter.maybe_export_checkpoint(
          self.checkpoint, results, self.global_step.numpy())
    return results