Spaces:
Runtime error
Runtime error
File size: 4,458 Bytes
5672777 93528c6 5672777 93528c6 5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Multitask trainer that interleaves each task's train step."""
from typing import Union
import gin
import orbit
import tensorflow as tf, tf_keras
from official.modeling.multitask import base_model
from official.modeling.multitask import base_trainer
from official.modeling.multitask import multitask
from official.modeling.multitask import task_sampler as sampler
@gin.configurable
class MultiTaskInterleavingTrainer(base_trainer.MultiTaskBaseTrainer):
"""MultiTask trainer that interleaves task update."""
def __init__(self,
multi_task: multitask.MultiTask,
multi_task_model: Union[tf_keras.Model,
base_model.MultiTaskBaseModel],
optimizer: Union[tf.optimizers.Optimizer,
tf_keras.optimizers.experimental.Optimizer,
tf_keras.optimizers.legacy.Optimizer],
task_sampler: sampler.TaskSampler,
trainer_options=None):
super().__init__(
multi_task=multi_task,
multi_task_model=multi_task_model,
optimizer=optimizer,
trainer_options=trainer_options)
self._task_sampler = task_sampler
# Build per task train step.
def _get_task_step(task_name, task):
def step_fn(inputs):
if isinstance(self.multi_task_model, base_model.MultiTaskBaseModel):
task_model = self.multi_task_model.sub_tasks[task_name]
else:
task_model = self.multi_task_model
task_logs = task.train_step(
inputs,
model=task_model,
optimizer=self.optimizer,
metrics=self.training_metrics[task_name])
self.training_losses[task_name].update_state(task_logs[task.loss])
return step_fn
self._task_train_step_map = {
name: _get_task_step(name, task)
for name, task in self.multi_task.tasks.items()
}
# TODO(haozhangthu): Add taskwise step counter to train_loop_end for logging
# on TensorBoard.
self._task_step_counters = {
name: orbit.utils.create_global_step() for name in self.multi_task.tasks
}
# If the new Keras optimizer is used, we require all model variables are
# created before the training and let the optimizer to create the slot
# variable all together.
if isinstance(optimizer, tf_keras.optimizers.experimental.Optimizer):
multi_task_model.build()
optimizer.build(multi_task_model.trainable_variables)
def task_step_counter(self, name):
return self._task_step_counters[name]
def train_step(self, iterator_map):
# Sample one task to train according to a multinomial distribution
rn = tf.random.stateless_uniform(shape=[], seed=(0, self.global_step))
cumulative_sample_distribution = self._task_sampler.task_cumulative_distribution(
self.global_step)
# Prepend a [0.0] for indexing convenience.
cumulative_sample_distribution = tf.concat(
[tf.constant([0.0], dtype=tf.float32), cumulative_sample_distribution],
axis=0)
for idx, (name, _) in enumerate(self.multi_task.tasks.items()):
begin = cumulative_sample_distribution[idx]
end = cumulative_sample_distribution[idx + 1]
if rn >= begin and rn < end:
self._strategy.run(
self._task_train_step_map[name], args=(next(iterator_map[name]),))
self.global_step.assign_add(1)
self.task_step_counter(name).assign_add(1)
def train_loop_end(self):
"""Record loss and metric values per task."""
result = super().train_loop_end()
# Interleaving training does not have a good semantic for `total_loss`. In
# fact, it is always zero. To avoid confusion, we filter the `total_loss`
# from the result logs.
if 'total_loss' in result:
result.pop('total_loss')
return result
|