File size: 5,948 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93528c6
 
 
 
 
 
 
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Experimental MultiTask base class for multi-task training/evaluation."""
import abc
from typing import Dict, List, Optional, Text, Union

import tensorflow as tf, tf_keras
from official.core import base_task
from official.core import config_definitions
from official.core import task_factory
from official.modeling import optimization
from official.modeling.multitask import base_model
from official.modeling.multitask import configs
from official.modeling.privacy import configs as dp_configs

OptimizationConfig = optimization.OptimizationConfig
RuntimeConfig = config_definitions.RuntimeConfig
DifferentialPrivacyConfig = dp_configs.DifferentialPrivacyConfig


class MultiTask(tf.Module, metaclass=abc.ABCMeta):
  """A multi-task class to manage multiple tasks."""

  def __init__(self,
               tasks: Union[Dict[Text, base_task.Task], List[base_task.Task]],
               task_weights: Optional[Dict[str, Union[float, int]]] = None,
               task_eval_steps: Optional[Dict[str, int]] = None,
               name: Optional[str] = None):
    """MultiTask initialization.

    Args:
      tasks: a list or a flat dict of Task.
      task_weights: a dict of (task, task weight), task weight can be applied
        directly during loss summation in a joint backward step, or it can be
        used to sample task among interleaved backward step.
      task_eval_steps: a dict of (task, eval steps).
      name: the instance name of a MultiTask object.
    """
    super().__init__(name=name)
    if isinstance(tasks, list):
      self._tasks = {}
      for task in tasks:
        if task.name in self._tasks:
          raise ValueError("Duplicated tasks found, task.name is %s" %
                           task.name)
        self._tasks[task.name] = task
    elif isinstance(tasks, dict):
      self._tasks = tasks
    else:
      raise ValueError("The tasks argument has an invalid type: %s" %
                       type(tasks))
    self.task_eval_steps = task_eval_steps or {}
    self._task_weights = task_weights or {}
    self._task_weights = dict([
        (name, self._task_weights.get(name, 1.0)) for name in self.tasks
    ])

  @classmethod
  def from_config(cls, config: configs.MultiTaskConfig, logging_dir=None):
    tasks = {}
    task_eval_steps = {}
    task_weights = {}
    for task_routine in config.task_routines:
      task_name = task_routine.task_name or task_routine.task_config.name
      tasks[task_name] = task_factory.get_task(
          task_routine.task_config, logging_dir=logging_dir, name=task_name)
      task_eval_steps[task_name] = task_routine.eval_steps
      task_weights[task_name] = task_routine.task_weight
    return cls(
        tasks, task_eval_steps=task_eval_steps, task_weights=task_weights)

  @property
  def tasks(self):
    return self._tasks

  def task_weight(self, task_name):
    return self._task_weights[task_name]

  @property
  def task_weights(self):
    return self._task_weights

  @classmethod
  def create_optimizer(cls,
                       optimizer_config: OptimizationConfig,
                       runtime_config: Optional[RuntimeConfig] = None,
                       dp_config: Optional[DifferentialPrivacyConfig] = None):
    return base_task.Task.create_optimizer(
        optimizer_config=optimizer_config, runtime_config=runtime_config,
        dp_config=dp_config)

  def joint_train_step(self, task_inputs,
                       multi_task_model: base_model.MultiTaskBaseModel,
                       optimizer: tf_keras.optimizers.Optimizer, task_metrics,
                       **kwargs):
    """The joint train step.

    Args:
      task_inputs: a dictionary of task names and per-task features.
      multi_task_model: a MultiTaskBaseModel instance.
      optimizer: a tf.optimizers.Optimizer.
      task_metrics: a dictionary of task names and per-task metrics.
      **kwargs: other arguments to pass through.

    Returns:
      A dictionary of losses, inculding per-task losses and their weighted sum.
    """
    losses = {}
    with tf.GradientTape() as tape:
      total_loss = 0.0
      for name, model in multi_task_model.sub_tasks.items():
        inputs = task_inputs[name]
        if isinstance(inputs, tuple) and len(inputs) == 2:
          features, labels = inputs
        elif isinstance(inputs, dict):
          features, labels = inputs, inputs
        else:
          raise ValueError("The iterator output is neither a tuple nor a "
                           "dictionary. It is not implemented to support "
                           "such outputs.")
        outputs = model(features, training=True)
        task_loss = self.tasks[name].build_losses(labels, outputs)
        task_weight = self.task_weight(name)
        total_loss += task_weight * task_loss
        losses[name] = task_loss
        self.tasks[name].process_metrics(task_metrics[name], labels, outputs,
                                         **kwargs)

      # Scales loss as the default gradients allreduce performs sum inside
      # the optimizer.
      scaled_loss = total_loss / tf.distribute.get_strategy(
      ).num_replicas_in_sync
    tvars = multi_task_model.trainable_variables
    grads = tape.gradient(scaled_loss, tvars)
    optimizer.apply_gradients(list(zip(grads, tvars)))
    losses["total_loss"] = total_loss
    return losses