File size: 11,616 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93528c6
5672777
93528c6
 
 
 
 
 
 
 
 
 
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Multitask training driver library."""
# pytype: disable=attribute-error
import os
from typing import Any, List, Mapping, Optional, Tuple, Union
from absl import logging
import orbit
import tensorflow as tf, tf_keras
from official.core import base_task
from official.core import base_trainer as core_lib
from official.core import train_utils
from official.modeling.multitask import base_model
from official.modeling.multitask import base_trainer
from official.modeling.multitask import configs
from official.modeling.multitask import evaluator as evaluator_lib
from official.modeling.multitask import interleaving_trainer
from official.modeling.multitask import multitask
from official.modeling.multitask import task_sampler

TRAINERS = {
    'interleaving': interleaving_trainer.MultiTaskInterleavingTrainer,
    'joint': base_trainer.MultiTaskBaseTrainer
}


def run_experiment(
    *,
    distribution_strategy: tf.distribute.Strategy,
    task: multitask.MultiTask,
    model: base_model.MultiTaskBaseModel,
    mode: str,
    params: configs.MultiTaskExperimentConfig,
    model_dir: str,
    run_post_eval: bool = False,
    trainer: base_trainer.MultiTaskBaseTrainer = None,
    eval_summary_manager: Optional[orbit.utils.SummaryManagerInterface] = None,
    best_ckpt_exporter_creator: Optional[Any] = train_utils
    .maybe_create_best_ckpt_exporter
) -> Union[base_model.MultiTaskBaseModel, Tuple[base_model.MultiTaskBaseModel,
                                                Mapping[Any, Any]]]:
  """Runs train/eval configured by the experiment params.

  Args:
    distribution_strategy: A distribution distribution_strategy.
    task: A MultiTaskTask instance.
    model: A MultiTaskBaseModel instance.
    mode: A 'str', specifying the mode. Can be 'train', 'eval', 'train_and_eval'
      or 'continuous_eval'.
    params: ExperimentConfig instance.
    model_dir: A 'str', a path to store model checkpoints and summaries.
    run_post_eval: Whether to run post eval once after training, metrics logs
      are returned.
    trainer: (optional) A multi-task trainer to use. If none is provided, a
      default one will be created based on `params`.
    eval_summary_manager: Instance of the eval summary manager. If set, the
      `eval_summary_dir` will be ignored. Otherwise the eval summary manager
      will be created internally for TensorBoard summaries by default from the
      `eval_summary_dir`.
    best_ckpt_exporter_creator: A functor for creating best checkpoint exporter.

  Returns:
      model: `base_model.MultiTaskBaseModel` instance.
  """

  is_training = 'train' in mode
  is_eval = 'eval' in mode
  with distribution_strategy.scope():
    optimizer = train_utils.create_optimizer(task, params)
    kwargs = dict(multi_task=task, multi_task_model=model, optimizer=optimizer)
    if params.trainer.trainer_type == 'interleaving':
      sampler = task_sampler.get_task_sampler(params.trainer.task_sampler,
                                              task.task_weights)
      kwargs.update(dict(task_sampler=sampler))
    if trainer is None:
      trainer = TRAINERS[params.trainer.trainer_type](
          **kwargs) if is_training else None
    if is_eval:
      eval_steps = task.task_eval_steps
      evaluator = evaluator_lib.MultiTaskEvaluator(
          eval_tasks=task.tasks.values(),
          model=model,
          eval_steps=eval_steps,
          global_step=trainer.global_step if is_training else None,
          checkpoint_exporter=best_ckpt_exporter_creator(params, model_dir))
    else:
      evaluator = None

  if trainer:
    checkpoint = trainer.checkpoint
    global_step = trainer.global_step
  else:
    checkpoint = evaluator.checkpoint
    global_step = evaluator.global_step

  checkpoint_manager = tf.train.CheckpointManager(
      checkpoint,
      directory=model_dir,
      max_to_keep=params.trainer.max_to_keep,
      step_counter=global_step,
      checkpoint_interval=params.trainer.checkpoint_interval,
      init_fn=model.initialize)

  controller = orbit.Controller(
      strategy=distribution_strategy,
      trainer=trainer,
      evaluator=evaluator,
      global_step=global_step,
      steps_per_loop=params.trainer.steps_per_loop,
      checkpoint_manager=checkpoint_manager,
      summary_dir=os.path.join(model_dir, 'train'),
      eval_summary_dir=os.path.join(model_dir, 'validation'),
      eval_summary_manager=eval_summary_manager,
      summary_interval=params.trainer.summary_interval)

  logging.info('Starts to execute mode: %s', mode)
  with distribution_strategy.scope():
    if mode == 'train':
      controller.train(steps=params.trainer.train_steps)
    elif mode == 'train_and_eval':
      controller.train_and_evaluate(
          train_steps=params.trainer.train_steps,
          eval_steps=params.trainer.validation_steps,
          eval_interval=params.trainer.validation_interval)
    elif mode == 'eval':
      controller.evaluate(steps=params.trainer.validation_steps)
    elif mode == 'continuous_eval':

      def timeout_fn():
        if evaluator.global_step.numpy() >= params.trainer.train_steps:
          return True
        return False

      controller.evaluate_continuously(
          steps=params.trainer.validation_steps,
          timeout=params.trainer.continuous_eval_timeout,
          timeout_fn=timeout_fn)
    else:
      raise NotImplementedError('The mode is not implemented: %s' % mode)

    if run_post_eval:
      return model, evaluator.evaluate(
          tf.convert_to_tensor(params.trainer.validation_steps))  # pytype: disable=bad-return-type  # typed-keras
    else:
      return model


def run_experiment_with_multitask_eval(
    *,
    distribution_strategy: tf.distribute.Strategy,
    train_task: base_task.Task,
    eval_tasks: List[base_task.Task],
    mode: str,
    params: configs.MultiEvalExperimentConfig,
    model_dir: str,
    run_post_eval: bool = False,
    save_summary: bool = True,
    trainer: Optional[core_lib.Trainer] = None,
    eval_summary_manager: Optional[orbit.utils.SummaryManagerInterface] = None,
    best_ckpt_exporter_creator: Optional[Any] = train_utils
    .maybe_create_best_ckpt_exporter,
) -> Tuple[Any, Any]:
  """Runs train/eval configured by the experiment params.

  Args:
    distribution_strategy: A distribution distribution_strategy.
    train_task: A base_task.Task instance.
    eval_tasks: A list of evaluation tasks.
    mode: A 'str', specifying the mode. Can be 'train', 'eval', 'train_and_eval'
      or 'continuous_eval'.
    params: MultiEvalExperimentConfig instance.
    model_dir: A 'str', a path to store model checkpoints and summaries.
    run_post_eval: Whether to run post eval once after training, metrics logs
      are returned.
    save_summary: Whether to save train and validation summary.
    trainer: the core_lib.Trainer instance. It should be created within the
      strategy.scope(). If not provided, an instance will be created by default
      if `mode` contains 'train'.
    eval_summary_manager: Instance of the eval summary manager. If set, the
      `eval_summary_dir` will be ignored. Otherwise the eval summary manager
      will be created internally for TensorBoard summaries by default from the
      `eval_summary_dir`.
    best_ckpt_exporter_creator: A functor for creating best checkpoint exporter.

  Returns:
      model: `tf_keras.Model` instance.
  """

  is_training = 'train' in mode
  is_eval = 'eval' in mode
  with distribution_strategy.scope():
    if is_training:
      trainer = trainer or core_lib.Trainer(
          config=params,
          task=train_task,
          model=train_task.build_model(),
          optimizer=train_utils.create_optimizer(train_task, params),
          train=True,
          evaluate=False)
    else:
      trainer = None

    # Build the model or fetch the pre-cached one (which could be either
    # multi-task model or single task model).
    model = None
    if trainer is None:
      if isinstance(train_task, multitask.MultiTask):
        model = train_task.build_multitask_model()
      else:
        model = train_task.build_model()
    else:
      if isinstance(trainer, base_trainer.MultiTaskBaseTrainer):
        model = trainer.multi_task_model
      else:
        model = trainer.model

    if is_eval:
      eval_steps = dict([(task_routine.task_config.name,
                          task_routine.eval_steps)
                         for task_routine in params.eval_tasks])
      evaluator = evaluator_lib.MultiTaskEvaluator(
          eval_tasks=eval_tasks,
          model=model,
          global_step=trainer.global_step if is_training else None,
          eval_steps=eval_steps,
          checkpoint_exporter=best_ckpt_exporter_creator(params, model_dir))
    else:
      evaluator = None

  if trainer:
    checkpoint = trainer.checkpoint
    global_step = trainer.global_step
  else:
    checkpoint = evaluator.checkpoint
    global_step = evaluator.global_step

  checkpoint_manager = tf.train.CheckpointManager(
      checkpoint,
      directory=model_dir,
      max_to_keep=params.trainer.max_to_keep,
      step_counter=global_step,
      checkpoint_interval=params.trainer.checkpoint_interval,
      init_fn=trainer.initialize if trainer else None)

  controller = orbit.Controller(
      strategy=distribution_strategy,
      trainer=trainer,
      evaluator=evaluator,
      global_step=global_step,
      steps_per_loop=params.trainer.steps_per_loop,
      checkpoint_manager=checkpoint_manager,
      summary_dir=os.path.join(model_dir, 'train') if save_summary else None,
      eval_summary_dir=os.path.join(model_dir, 'validation') if
      (save_summary) else None,
      eval_summary_manager=eval_summary_manager,
      summary_interval=params.trainer.summary_interval if
      (save_summary) else None)

  logging.info('Starts to execute mode: %s', mode)
  with distribution_strategy.scope():
    if mode == 'train':
      controller.train(steps=params.trainer.train_steps)
    elif mode == 'train_and_eval':
      controller.train_and_evaluate(
          train_steps=params.trainer.train_steps,
          eval_steps=params.trainer.validation_steps,
          eval_interval=params.trainer.validation_interval)
    elif mode == 'eval':
      controller.evaluate(steps=params.trainer.validation_steps)
    elif mode == 'continuous_eval':

      def timeout_fn():
        if evaluator.global_step.numpy() >= params.trainer.train_steps:
          return True
        return False

      controller.evaluate_continuously(
          steps=params.trainer.validation_steps,
          timeout=params.trainer.continuous_eval_timeout,
          timeout_fn=timeout_fn)
    else:
      raise NotImplementedError('The mode is not implemented: %s' % mode)

    if run_post_eval:
      return model, evaluator.evaluate(
          tf.convert_to_tensor(params.trainer.validation_steps))  # pytype: disable=bad-return-type  # typed-keras
    else:
      return model, {}  # pytype: disable=bad-return-type  # typed-keras