Spaces:
Runtime error
Runtime error
File size: 10,518 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Exponential moving average optimizer."""
from typing import List, Optional
import tensorflow as tf, tf_keras
# pylint: disable=protected-access
def maybe_merge_call(fn, strategy, *args, **kwargs):
"""Maybe invoke `fn` via `merge_call` which may or may not be fulfilled.
The caller of this utility function requests to invoke `fn` via `merge_call`
at `tf.distribute.Strategy`'s best efforts. It is `tf.distribute`'s internal
whether the request is honored, depending on the `Strategy`. See
`tf.distribute.ReplicaContext.merge_call()` for more information.
This is adapted from tensorflow/python/distribute/merge_call_interim.py.
Args:
fn: the function to be invoked.
strategy: the `tf.distribute.Strategy` to call `fn` with.
*args: the positional arguments to be passed in to `fn`.
**kwargs: the keyword arguments to be passed in to `fn`.
Returns:
The return value of the `fn` call.
"""
if strategy.extended._use_merge_call():
return tf.distribute.get_replica_context().merge_call(
fn, args=args, kwargs=kwargs
)
else:
return fn(strategy, *args, **kwargs)
class ExponentialMovingAverage(tf_keras.optimizers.legacy.Optimizer):
"""Optimizer that computes an exponential moving average of the variables.
Empirically it has been found that using the moving average of the trained
parameters of a deep network is better than using its trained parameters
directly. This optimizer allows you to compute this moving average and swap
the variables at save time so that any code outside of the training loop
will use by default the average values instead of the original ones.
Example of usage for training:
```python
opt = tf_keras.optimizers.SGD(learning_rate)
opt = ExponentialMovingAverage(opt)
opt.shadow_copy(model)
```
At test time, swap the shadow variables to evaluate on the averaged weights:
```python
opt.swap_weights()
# Test eval the model here
opt.swap_weights()
```
"""
def __init__(self,
optimizer: tf_keras.optimizers.Optimizer,
trainable_weights_only: bool = True,
average_decay: float = 0.99,
start_step: int = 0,
dynamic_decay: bool = True,
name: str = 'ExponentialMovingAverage',
**kwargs):
"""Construct a new ExponentialMovingAverage optimizer.
Args:
optimizer: `tf_keras.optimizers.Optimizer` that will be
used to compute and apply gradients.
trainable_weights_only: 'bool', if True, only model trainable weights will
be updated. Otherwise, all model weights will be updated. This mainly
affects batch normalization parameters.
average_decay: float. Decay to use to maintain the moving averages
of trained variables.
start_step: int. What step to start the moving average.
dynamic_decay: bool. Whether to change the decay based on the number
of optimizer updates. Decay will start at 0.1 and gradually increase
up to `average_decay` after each optimizer update. This behavior is
similar to `tf.train.ExponentialMovingAverage` in TF 1.x.
name: Optional name for the operations created when applying
gradients. Defaults to "moving_average".
**kwargs: keyword arguments. Allowed to be {`clipnorm`,
`clipvalue`, `lr`, `decay`}.
"""
super().__init__(name, **kwargs)
self._average_decay = average_decay
self._trainable_weights_only = trainable_weights_only
self._start_step = tf.constant(start_step, tf.float32)
self._dynamic_decay = dynamic_decay
self._optimizer = optimizer
self._track_trackable(self._optimizer, 'ema_base_optimizer')
self._average_weights = None
self._model_weights = None
def shadow_copy(self, model: tf_keras.Model):
"""Creates shadow variables for the given model weights."""
if self._trainable_weights_only:
self._model_weights = model.trainable_variables
else:
self._model_weights = model.variables
for var in self._model_weights:
self.add_slot(var, 'average', initializer='zeros')
self._average_weights = [
self.get_slot(var, 'average') for var in self._model_weights
]
@property
def has_shadow_copy(self):
"""Whether this optimizer has created shadow variables."""
return self._model_weights is not None and self._average_weights is not None
def _create_slots(self, var_list):
self._optimizer._create_slots(var_list=var_list) # pylint: disable=protected-access
def apply_gradients(self, grads_and_vars, name: Optional[str] = None):
result = self._optimizer.apply_gradients(grads_and_vars, name)
maybe_merge_call(self.update_average, tf.distribute.get_strategy())
return result
@tf.function
def update_average(self, strategy):
# Compute current decay value.
step = tf.cast(self.iterations, tf.float32)
if step < self._start_step:
decay = tf.constant(0., tf.float32)
elif self._dynamic_decay:
decay = step - self._start_step
decay = tf.minimum(self._average_decay, (1. + decay) / (10. + decay))
else:
decay = self._average_decay
def _apply_moving(average, normal):
diff = average - normal
average.assign_sub(tf.cast(1.0 - decay, average.dtype) * diff)
return average
# Update moving average with the latest value.
for average, normal in zip(self._average_weights, self._model_weights):
strategy.extended.update(
average, _apply_moving, args=(normal,), group=False
)
def swap_weights(self):
"""Swap the average and moving weights.
This is a convenience method to allow one to evaluate the averaged weights
at test time. Loads the weights stored in `self._average` into the model,
keeping a copy of the original model weights. Swapping twice will return
the original weights.
"""
if tf.distribute.in_cross_replica_context():
strategy = tf.distribute.get_strategy()
strategy.run(self._swap_weights, args=())
else:
raise ValueError(
'Swapping weights must occur under a tf.distribute.Strategy.'
)
@tf.function
def _swap_weights(self):
def fn_0(a, b):
a.assign_add(b)
return a
def fn_1(b, a):
b.assign(a - b)
return b
def fn_2(a, b):
a.assign_sub(b)
return a
def _swap(strategy, a_and_b):
"""Swap `a` and `b` and mirror to all devices."""
for a, b in a_and_b:
strategy.extended.update(a, fn_0, args=(b,)) # a = a + b
strategy.extended.update(b, fn_1, args=(a,)) # b = a - b
strategy.extended.update(a, fn_2, args=(b,)) # a = a - b
# Use merge_call if requested by strategy and always for TPUStrategy as
# the use of merge_call is not recommended and deprecated for other
# strategies such as mirrored strategy (MS) and multi-worker mirrored
# strategy (MWMS) if nccl/collective_ops are used, which can operate in
# pure replica context.
strategy = tf.distribute.get_strategy()
if isinstance(strategy, tf.distribute.TPUStrategy):
maybe_merge_call(
_swap,
strategy,
zip(self._average_weights, self._model_weights),
)
else:
_swap(
strategy,
zip(self._average_weights, self._model_weights),
)
def assign_average_vars(self, var_list: List[tf.Variable]):
"""Assign variables in var_list with their respective averages.
Args:
var_list: List of model variables to be assigned to their average.
Returns:
assign_op: The op corresponding to the assignment operation of
variables to their average.
"""
assign_op = tf.group([
var.assign(self.get_slot(var, 'average')) for var in var_list
if var.trainable
])
return assign_op
def _create_hypers(self):
self._optimizer._create_hypers() # pylint: disable=protected-access
def _prepare(self, var_list):
return self._optimizer._prepare(var_list=var_list) # pylint: disable=protected-access
@property
def iterations(self):
return self._optimizer.iterations
@iterations.setter
def iterations(self, variable):
self._optimizer.iterations = variable
@property
def weights(self):
# return self._weights + self._optimizer.weights
return self._optimizer.weights
def variables(self):
return self._weights + [self.iterations]
@property
def lr(self):
return self._optimizer._get_hyper('learning_rate')
@lr.setter
def lr(self, lr):
self._optimizer._set_hyper('learning_rate', lr)
@property
def learning_rate(self):
return self._optimizer._get_hyper('learning_rate')
@learning_rate.setter
def learning_rate(self, learning_rate): # pylint: disable=redefined-outer-name
self._optimizer._set_hyper('learning_rate', learning_rate)
def _resource_apply_dense(self, grad, var):
return self._optimizer._resource_apply_dense(grad, var)
def _resource_apply_sparse(self, grad, var, indices):
return self._optimizer._resource_apply_sparse(grad, var, indices)
def _resource_apply_sparse_duplicate_indices(self, grad, var, indices):
return self._optimizer._resource_apply_sparse_duplicate_indices(
grad, var, indices)
def get_config(self):
config = {
'optimizer': tf_keras.optimizers.serialize(self._optimizer),
'average_decay': self._average_decay,
'start_step': self._start_step,
'dynamic_decay': self._dynamic_decay,
}
base_config = super(ExponentialMovingAverage, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
@classmethod
def from_config(cls, config, custom_objects=None):
optimizer = tf_keras.optimizers.deserialize(
config.pop('optimizer'),
custom_objects=custom_objects,
)
return cls(optimizer, **config)
|