Spaces:
Runtime error
Runtime error
File size: 10,147 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Layer-wise Adaptive Moments (LAMB) optimizer.
See paper [Large Batch Optimization for Deep Learning: Training BERT in
76 minutes](https://arxiv.org/abs/1904.00962).
"""
import re
from typing import Optional, Union, Callable, List
import numpy as np
import tensorflow as tf, tf_keras
FloatTensorLike = Union[tf.Tensor, float, np.float16, np.float32]
@tf_keras.utils.register_keras_serializable(package="Addons")
class LAMB(tf_keras.optimizers.legacy.Optimizer):
"""Optimizer that implements the Layer-wise Adaptive Moments (LAMB).
See paper [Large Batch Optimization for Deep Learning: Training BERT
in 76 minutes](https://arxiv.org/abs/1904.00962).
"""
def __init__(
self,
learning_rate: Union[FloatTensorLike, Callable] = 0.001,
beta_1: FloatTensorLike = 0.9,
beta_2: FloatTensorLike = 0.999,
epsilon: FloatTensorLike = 1e-6,
weight_decay_rate: FloatTensorLike = 0.0,
exclude_from_weight_decay: Optional[List[str]] = None,
exclude_from_layer_adaptation: Optional[List[str]] = None,
name: str = "LAMB",
**kwargs,
):
"""Construct a new LAMB optimizer.
Args:
learning_rate: A `Tensor` or a floating point value. or a schedule that
is a `tf_keras.optimizers.schedules.LearningRateSchedule` The learning
rate.
beta_1: A `float` value or a constant `float` tensor. The exponential
decay rate for the 1st moment estimates.
beta_2: A `float` value or a constant `float` tensor. The exponential
decay rate for the 2nd moment estimates.
epsilon: A small constant for numerical stability.
weight_decay_rate: weight decay rate.
exclude_from_weight_decay: List of regex patterns of variables excluded
from weight decay. Variables whose name contain a substring matching
the pattern will be excluded.
exclude_from_layer_adaptation: List of regex patterns of variables
excluded from layer adaptation. Variables whose name contain a
substring matching the pattern will be excluded.
name: Optional name for the operations created when applying gradients.
Defaults to "LAMB".
**kwargs: keyword arguments. Allowed to be {`clipnorm`, `clipvalue`,
`lr`, `decay`}. `clipnorm` is clip gradients by norm; `clipvalue` is
clip gradients by value, `decay` is included for backward
compatibility to allow time inverse decay of learning rate. `lr` is
included for backward compatibility, recommended to use
`learning_rate` instead.
"""
super().__init__(name, **kwargs)
# Just adding the square of the weights to the loss function is *not*
# the correct way of using L2 regularization/weight decay with Adam,
# since that will interact with the m and v parameters in strange ways.
#
# Instead we want to decay the weights in a manner that doesn't interact
# with the m/v parameters.
self._set_hyper("weight_decay_rate", weight_decay_rate)
self._set_hyper("learning_rate", kwargs.get("lr", learning_rate))
# This is learning rate decay for using keras learning rate schedule.
self._set_hyper("decay", self._initial_decay)
self._set_hyper("beta_1", beta_1)
self._set_hyper("beta_2", beta_2)
self.epsilon = epsilon or tf.backend_config.epsilon()
self.exclude_from_weight_decay = exclude_from_weight_decay
# exclude_from_layer_adaptation is set to exclude_from_weight_decay if
# the arg is None.
if exclude_from_layer_adaptation:
self.exclude_from_layer_adaptation = exclude_from_layer_adaptation
else:
self.exclude_from_layer_adaptation = exclude_from_weight_decay
def _create_slots(self, var_list):
# Create slots for the first and second moments.
# Separate for-loops to respect the ordering of slot variables from v1.
for var in var_list:
self.add_slot(var, "m")
for var in var_list:
self.add_slot(var, "v")
def _prepare_local(self, var_device, var_dtype, apply_state):
super()._prepare_local(var_device, var_dtype, apply_state)
local_step = tf.cast(self.iterations + 1, var_dtype)
beta_1_t = tf.identity(self._get_hyper("beta_1", var_dtype))
beta_2_t = tf.identity(self._get_hyper("beta_2", var_dtype))
weight_decay_rate = tf.identity(
self._get_hyper("weight_decay_rate", var_dtype)
)
beta_1_power = tf.pow(beta_1_t, local_step)
beta_2_power = tf.pow(beta_2_t, local_step)
apply_state[(var_device, var_dtype)].update(
dict(
weight_decay_rate=weight_decay_rate,
epsilon=tf.convert_to_tensor(self.epsilon, var_dtype),
beta_1_t=beta_1_t,
beta_1_power=beta_1_power,
one_minus_beta_1_t=1 - beta_1_t,
beta_2_t=beta_2_t,
beta_2_power=beta_2_power,
one_minus_beta_2_t=1 - beta_2_t,
)
)
def _resource_apply_dense(self, grad, var, apply_state=None):
var_device, var_dtype = var.device, var.dtype.base_dtype
coefficients = (apply_state or {}).get(
(var_device, var_dtype)
) or self._fallback_apply_state(var_device, var_dtype)
# m_t = beta1 * m + (1 - beta1) * g_t
m = self.get_slot(var, "m")
m_scaled_g_values = grad * coefficients["one_minus_beta_1_t"]
m_t = m * coefficients["beta_1_t"] + m_scaled_g_values
m_t = m.assign(m_t, use_locking=self._use_locking)
# v_t = beta2 * v + (1 - beta2) * (g_t * g_t)
v = self.get_slot(var, "v")
v_scaled_g_values = (grad * grad) * coefficients["one_minus_beta_2_t"]
v_t = v * coefficients["beta_2_t"] + v_scaled_g_values
v_t = v.assign(v_t, use_locking=self._use_locking)
m_t_hat = m_t / (1.0 - coefficients["beta_1_power"])
v_t_hat = v_t / (1.0 - coefficients["beta_2_power"])
v_sqrt = tf.sqrt(v_t_hat)
update = m_t_hat / (v_sqrt + coefficients["epsilon"])
var_name = self._get_variable_name(var.name)
if self._do_use_weight_decay(var_name):
update += coefficients["weight_decay_rate"] * var
ratio = 1.0
if self._do_layer_adaptation(var_name):
w_norm = tf.norm(var, ord=2)
g_norm = tf.norm(update, ord=2)
ratio = tf.where(
tf.greater(w_norm, 0),
tf.where(tf.greater(g_norm, 0), (w_norm / g_norm), 1.0),
1.0,
)
var_update = var - ratio * coefficients["lr_t"] * update
return var.assign(var_update, use_locking=self._use_locking)
def _resource_apply_sparse(self, grad, var, indices, apply_state=None):
var_device, var_dtype = var.device, var.dtype.base_dtype
coefficients = (apply_state or {}).get(
(var_device, var_dtype)
) or self._fallback_apply_state(var_device, var_dtype)
# m_t = beta1 * m + (1 - beta1) * g_t
m = self.get_slot(var, "m")
m_scaled_g_values = grad * coefficients["one_minus_beta_1_t"]
m_t = m.assign(m * coefficients["beta_1_t"], use_locking=self._use_locking)
with tf.control_dependencies([m_t]):
m_t = self._resource_scatter_add(m, indices, m_scaled_g_values)
# v_t = beta2 * v + (1 - beta2) * (g_t * g_t)
v = self.get_slot(var, "v")
v_scaled_g_values = (grad * grad) * coefficients["one_minus_beta_2_t"]
v_t = v.assign(v * coefficients["beta_2_t"], use_locking=self._use_locking)
with tf.control_dependencies([v_t]):
v_t = self._resource_scatter_add(v, indices, v_scaled_g_values)
m_t_hat = m_t / (1.0 - coefficients["beta_1_power"])
v_t_hat = v_t / (1.0 - coefficients["beta_2_power"])
v_sqrt = tf.sqrt(v_t_hat)
update = m_t_hat / (v_sqrt + coefficients["epsilon"])
var_name = self._get_variable_name(var.name)
if self._do_use_weight_decay(var_name):
update += coefficients["weight_decay_rate"] * var
ratio = 1.0
if self._do_layer_adaptation(var_name):
w_norm = tf.norm(var, ord=2)
g_norm = tf.norm(update, ord=2)
ratio = tf.where(
tf.greater(w_norm, 0),
tf.where(tf.greater(g_norm, 0), (w_norm / g_norm), 1.0),
1.0,
)
var_update = var.assign_sub(
ratio * coefficients["lr_t"] * update, use_locking=self._use_locking
)
return tf.group(*[var_update, m_t, v_t])
def get_config(self):
config = super().get_config()
config.update({
"learning_rate": self._serialize_hyperparameter("learning_rate"),
"weight_decay_rate": self._serialize_hyperparameter(
"weight_decay_rate"
),
"decay": self._serialize_hyperparameter("decay"),
"beta_1": self._serialize_hyperparameter("beta_1"),
"beta_2": self._serialize_hyperparameter("beta_2"),
"epsilon": self.epsilon,
})
return config
def _do_use_weight_decay(self, param_name):
"""Whether to use L2 weight decay for `param_name`."""
if self.exclude_from_weight_decay:
for r in self.exclude_from_weight_decay:
if re.search(r, param_name) is not None:
return False
return True
def _do_layer_adaptation(self, param_name):
"""Whether to do layer-wise learning rate adaptation for `param_name`."""
if self.exclude_from_layer_adaptation:
for r in self.exclude_from_layer_adaptation:
if re.search(r, param_name) is not None:
return False
return True
def _get_variable_name(self, param_name):
"""Get the variable name from the tensor name."""
m = re.match("^(.*):\\d+$", param_name)
if m is not None:
param_name = m.group(1)
return param_name
|