Spaces:
Runtime error
Runtime error
File size: 5,938 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for LAMB Optimizer."""
import numpy as np
from numpy import linalg
import tensorflow as tf, tf_keras
from official.modeling.optimization import lamb
def lamb_update_numpy(param,
g_t,
t,
m,
v,
lr=0.001,
lamb_wd=0.0,
beta1=0.9,
beta2=0.999,
epsilon=1e-6):
m_t = beta1 * m + (1 - beta1) * g_t
v_t = beta2 * v + (1 - beta2) * g_t * g_t
m_t_hat = m_t / (1 - beta1**(t + 1))
v_t_hat = v_t / (1 - beta2**(t + 1))
update = m_t_hat / (np.sqrt(v_t_hat) + epsilon)
update += lamb_wd * param
w_norm = linalg.norm(param, ord=2)
g_norm = linalg.norm(update, ord=2)
ratio = np.where(w_norm > 0, np.where(g_norm > 0, (w_norm / g_norm), 1.0),
1.0)
param_t = param - ratio * lr * update
return param_t, m_t, v_t
def get_beta_accumulators(opt, dtype):
local_step = tf.cast(opt.iterations + 1, dtype)
beta_1_t = tf.cast(opt._get_hyper("beta_1"), dtype)
beta_1_power = tf.math.pow(beta_1_t, local_step)
beta_2_t = tf.cast(opt._get_hyper("beta_2"), dtype)
beta_2_power = tf.math.pow(beta_2_t, local_step)
return (beta_1_power, beta_2_power)
class LAMBTest(tf.test.TestCase):
def test_sparse(self):
dtype = tf.float32
# Initialize tf for numpy implementation.
m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0
var0_np = np.array([1.0, 1.0, 2.0], dtype=dtype.as_numpy_dtype)
grads0_np = np.array([0.1, 0.0, 0.1], dtype=dtype.as_numpy_dtype)
var1_np = np.array([3.0, 3.0, 4.0], dtype=dtype.as_numpy_dtype)
grads1_np = np.array([0.01, 0.0, 0.01], dtype=dtype.as_numpy_dtype)
var0 = tf.Variable(var0_np)
var1 = tf.Variable(var1_np)
grads0_np_indices = np.array([0, 2], dtype=np.int32)
grads0 = tf.IndexedSlices(
tf.constant(grads0_np[grads0_np_indices]),
tf.constant(grads0_np_indices),
tf.constant([3]),
)
grads1_np_indices = np.array([0, 2], dtype=np.int32)
grads1 = tf.IndexedSlices(
tf.constant(grads1_np[grads1_np_indices]),
tf.constant(grads1_np_indices),
tf.constant([3]),
)
opt = lamb.LAMB()
# Fetch params to validate initial values
np.testing.assert_allclose(np.asanyarray([1.0, 1.0, 2.0]), var0.numpy())
np.testing.assert_allclose(np.asanyarray([3.0, 3.0, 4.0]), var1.numpy())
# Run 3 steps of LAMB
for t in range(3):
beta_1_power, beta_2_power = get_beta_accumulators(opt, dtype)
self.assertAllClose(0.9 ** (t + 1), beta_1_power)
self.assertAllClose(0.999 ** (t + 1), beta_2_power)
opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
var0_np, m0, v0 = lamb_update_numpy(var0_np, grads0_np, t, m0, v0)
var1_np, m1, v1 = lamb_update_numpy(var1_np, grads1_np, t, m1, v1)
# Validate updated params
self.assertAllClose(var0_np, var0.numpy())
self.assertAllClose(var1_np, var1.numpy())
def test_basic_with_learning_rate_decay(self):
dtype = tf.float32
# Initialize variables for numpy implementation.
m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0
var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype)
grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype)
var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype)
grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype)
var0 = tf.Variable(var0_np, name="var0")
var1 = tf.Variable(var1_np, name="var1")
grads0 = tf.constant(grads0_np)
grads1 = tf.constant(grads1_np)
learning_rate = 0.001
beta_1 = 0.9
beta_2 = 0.999
epsilon = 1e-7
decay = 0.5
lamb_wd = 0.01
opt = lamb.LAMB(
learning_rate=learning_rate,
beta_1=beta_1,
beta_2=beta_2,
epsilon=epsilon,
weight_decay_rate=lamb_wd,
decay=decay,
)
# Run 3 steps of LAMB
for t in range(3):
opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
lr_np = learning_rate / (1 + decay * t)
var0_np, m0, v0 = lamb_update_numpy(
var0_np, grads0_np, t, m0, v0, lr=lr_np, lamb_wd=lamb_wd)
var1_np, m1, v1 = lamb_update_numpy(
var1_np, grads1_np, t, m1, v1, lr=lr_np, lamb_wd=lamb_wd)
# Validate updated params
self.assertAllClose(var0_np, var0.numpy())
self.assertAllClose(var1_np, var1.numpy())
def test_exclude_weight_decay(self):
opt = lamb.LAMB(
0.01, weight_decay_rate=0.01, exclude_from_weight_decay=["var1"]
)
assert opt._do_use_weight_decay("var0")
assert not opt._do_use_weight_decay("var1")
assert not opt._do_use_weight_decay("var1_weight")
def test_exclude_layer_adaptation(self):
opt = lamb.LAMB(0.01, exclude_from_layer_adaptation=["var1"])
assert opt._do_layer_adaptation("var0")
assert not opt._do_layer_adaptation("var1")
assert not opt._do_layer_adaptation("var1_weight")
def test_serialization(self):
optimizer = lamb.LAMB(1e-4)
config = tf_keras.optimizers.serialize(optimizer, use_legacy_format=True)
new_optimizer = tf_keras.optimizers.deserialize(
config, use_legacy_format=True
)
assert new_optimizer.get_config() == optimizer.get_config()
if __name__ == "__main__":
tf.test.main()
|