File size: 5,938 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tests for LAMB Optimizer."""
import numpy as np
from numpy import linalg

import tensorflow as tf, tf_keras

from official.modeling.optimization import lamb


def lamb_update_numpy(param,
                      g_t,
                      t,
                      m,
                      v,
                      lr=0.001,
                      lamb_wd=0.0,
                      beta1=0.9,
                      beta2=0.999,
                      epsilon=1e-6):

  m_t = beta1 * m + (1 - beta1) * g_t
  v_t = beta2 * v + (1 - beta2) * g_t * g_t

  m_t_hat = m_t / (1 - beta1**(t + 1))
  v_t_hat = v_t / (1 - beta2**(t + 1))
  update = m_t_hat / (np.sqrt(v_t_hat) + epsilon)

  update += lamb_wd * param

  w_norm = linalg.norm(param, ord=2)
  g_norm = linalg.norm(update, ord=2)
  ratio = np.where(w_norm > 0, np.where(g_norm > 0, (w_norm / g_norm), 1.0),
                   1.0)

  param_t = param - ratio * lr * update
  return param_t, m_t, v_t


def get_beta_accumulators(opt, dtype):
  local_step = tf.cast(opt.iterations + 1, dtype)
  beta_1_t = tf.cast(opt._get_hyper("beta_1"), dtype)
  beta_1_power = tf.math.pow(beta_1_t, local_step)
  beta_2_t = tf.cast(opt._get_hyper("beta_2"), dtype)
  beta_2_power = tf.math.pow(beta_2_t, local_step)
  return (beta_1_power, beta_2_power)


class LAMBTest(tf.test.TestCase):

  def test_sparse(self):
    dtype = tf.float32
    # Initialize tf for numpy implementation.
    m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0
    var0_np = np.array([1.0, 1.0, 2.0], dtype=dtype.as_numpy_dtype)
    grads0_np = np.array([0.1, 0.0, 0.1], dtype=dtype.as_numpy_dtype)
    var1_np = np.array([3.0, 3.0, 4.0], dtype=dtype.as_numpy_dtype)
    grads1_np = np.array([0.01, 0.0, 0.01], dtype=dtype.as_numpy_dtype)

    var0 = tf.Variable(var0_np)
    var1 = tf.Variable(var1_np)
    grads0_np_indices = np.array([0, 2], dtype=np.int32)
    grads0 = tf.IndexedSlices(
        tf.constant(grads0_np[grads0_np_indices]),
        tf.constant(grads0_np_indices),
        tf.constant([3]),
    )
    grads1_np_indices = np.array([0, 2], dtype=np.int32)
    grads1 = tf.IndexedSlices(
        tf.constant(grads1_np[grads1_np_indices]),
        tf.constant(grads1_np_indices),
        tf.constant([3]),
    )
    opt = lamb.LAMB()

    # Fetch params to validate initial values
    np.testing.assert_allclose(np.asanyarray([1.0, 1.0, 2.0]), var0.numpy())
    np.testing.assert_allclose(np.asanyarray([3.0, 3.0, 4.0]), var1.numpy())

    # Run 3 steps of LAMB
    for t in range(3):
      beta_1_power, beta_2_power = get_beta_accumulators(opt, dtype)
      self.assertAllClose(0.9 ** (t + 1), beta_1_power)
      self.assertAllClose(0.999 ** (t + 1), beta_2_power)

      opt.apply_gradients(zip([grads0, grads1], [var0, var1]))

      var0_np, m0, v0 = lamb_update_numpy(var0_np, grads0_np, t, m0, v0)
      var1_np, m1, v1 = lamb_update_numpy(var1_np, grads1_np, t, m1, v1)

      # Validate updated params
      self.assertAllClose(var0_np, var0.numpy())
      self.assertAllClose(var1_np, var1.numpy())

  def test_basic_with_learning_rate_decay(self):
    dtype = tf.float32
    # Initialize variables for numpy implementation.
    m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0
    var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype)
    grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype)
    var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype)
    grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype)

    var0 = tf.Variable(var0_np, name="var0")
    var1 = tf.Variable(var1_np, name="var1")
    grads0 = tf.constant(grads0_np)
    grads1 = tf.constant(grads1_np)

    learning_rate = 0.001
    beta_1 = 0.9
    beta_2 = 0.999
    epsilon = 1e-7
    decay = 0.5
    lamb_wd = 0.01

    opt = lamb.LAMB(
        learning_rate=learning_rate,
        beta_1=beta_1,
        beta_2=beta_2,
        epsilon=epsilon,
        weight_decay_rate=lamb_wd,
        decay=decay,
    )

    # Run 3 steps of LAMB
    for t in range(3):
      opt.apply_gradients(zip([grads0, grads1], [var0, var1]))

      lr_np = learning_rate / (1 + decay * t)

      var0_np, m0, v0 = lamb_update_numpy(
          var0_np, grads0_np, t, m0, v0, lr=lr_np, lamb_wd=lamb_wd)
      var1_np, m1, v1 = lamb_update_numpy(
          var1_np, grads1_np, t, m1, v1, lr=lr_np, lamb_wd=lamb_wd)

      # Validate updated params
      self.assertAllClose(var0_np, var0.numpy())
      self.assertAllClose(var1_np, var1.numpy())

  def test_exclude_weight_decay(self):
    opt = lamb.LAMB(
        0.01, weight_decay_rate=0.01, exclude_from_weight_decay=["var1"]
    )
    assert opt._do_use_weight_decay("var0")
    assert not opt._do_use_weight_decay("var1")
    assert not opt._do_use_weight_decay("var1_weight")

  def test_exclude_layer_adaptation(self):
    opt = lamb.LAMB(0.01, exclude_from_layer_adaptation=["var1"])
    assert opt._do_layer_adaptation("var0")
    assert not opt._do_layer_adaptation("var1")
    assert not opt._do_layer_adaptation("var1_weight")

  def test_serialization(self):
    optimizer = lamb.LAMB(1e-4)
    config = tf_keras.optimizers.serialize(optimizer, use_legacy_format=True)
    new_optimizer = tf_keras.optimizers.deserialize(
        config, use_legacy_format=True
    )
    assert new_optimizer.get_config() == optimizer.get_config()


if __name__ == "__main__":
  tf.test.main()