Spaces:
Runtime error
Runtime error
File size: 18,517 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Learning rate schedule classes."""
import math
from typing import Mapping, Any, Union, Optional
import tensorflow as tf, tf_keras
def _make_offset_wrapper(new_class_name: str, base_lr_class):
"""Generates a offset wrapper of learning rate schedule.
It will returns a subclass of the `base_lr_class`, the subclass takes an
`offset` argument in the constructor. When the new class instance is called,
the behavior is:
new_class_object(step) = base_lr_class_object(step - offset)
Example:
CosineDecayWithOffset = _make_offset_wrapper(
'CosineDecayWithOffset',
tf_keras.optimizers.schedules.CosineDecay)
# Use the lr:
lr = CosineDecayWithOffset(offset=100, initial_learning_rate=0.1,
decay_steps=1000)
lr(101) # equals to keras.optimizers.schedules.CosineDecay(...)(101-100)
Args:
new_class_name: the name of the new class.
base_lr_class: the base learning rate schedule class. Should be subclass of
tf_keras.optimizers.schedules.LearningRateSchedule
Returns:
A new class (subclass of the base_lr_class) that can take an offset.
"""
assert issubclass(base_lr_class,
tf_keras.optimizers.schedules.LearningRateSchedule), (
"base_lr_class should be subclass of keras "
f"LearningRateSchedule, got {base_lr_class}")
# pylint: disable=protected-access,pointless-statement
def offset_learning_rate_init(self, offset=0, **kwargs):
"""Construct learning rate schedule object.
When this object is called, its behavior is
self.__call__(step) == base_lr_class.__call__(step - offset)
Args:
self: this object.
offset: The offset when computing the learning rate schedule.
**kwargs: Pass through to base learning rate class constructor.
"""
base_lr_class.__init__(self, **kwargs)
self._offset = offset
def offset_learning_rate_call(self, step):
step = tf.cast(step - self._offset, tf.float32)
return base_lr_class.__call__(self, step)
# pylint: enable=protected-access,pointless-statement
return type(
new_class_name, (base_lr_class,), {
"base_lr_class": base_lr_class,
"__init__": offset_learning_rate_init,
"__call__": offset_learning_rate_call
})
PiecewiseConstantDecayWithOffset = _make_offset_wrapper(
"PiecewiseConstantDecayWithOffset",
tf_keras.optimizers.schedules.PiecewiseConstantDecay)
PolynomialDecayWithOffset = _make_offset_wrapper(
"PolynomialDecayWithOffset", tf_keras.optimizers.schedules.PolynomialDecay)
ExponentialDecayWithOffset = _make_offset_wrapper(
"ExponentialDecayWithOffset",
tf_keras.optimizers.schedules.ExponentialDecay)
CosineDecayWithOffset = _make_offset_wrapper(
"CosineDecayWithOffset",
tf_keras.optimizers.schedules.CosineDecay,
)
class LinearWarmup(tf_keras.optimizers.schedules.LearningRateSchedule):
"""Linear warmup schedule."""
def __init__(self,
after_warmup_lr_sched: Union[
tf_keras.optimizers.schedules.LearningRateSchedule, float],
warmup_steps: int,
warmup_learning_rate: float,
name: Optional[str] = None):
"""Add linear warmup schedule to a learning rate schedule.
warmup_lr is the initial learning rate, the final learning rate of the
init_warmup period is the initial learning rate of lr_schedule in use.
The learning rate at each step linearly increased according to the following
formula:
learning_rate = warmup_lr + step / warmup_steps
* (final_warmup_lr - warmup_lr).
Using warmup overrides the learning rate schedule by the number of warmup
steps.
Args:
after_warmup_lr_sched: tf_keras.optimizers.schedules .LearningRateSchedule
or a constant.
warmup_steps: Number of the warmup steps.
warmup_learning_rate: Initial learning rate for the warmup.
name: Optional, name of warmup schedule.
"""
super().__init__()
self._name = name
self._after_warmup_lr_sched = after_warmup_lr_sched
self._warmup_steps = warmup_steps
self._init_warmup_lr = warmup_learning_rate
if isinstance(after_warmup_lr_sched,
tf_keras.optimizers.schedules.LearningRateSchedule):
self._final_warmup_lr = after_warmup_lr_sched(warmup_steps)
else:
self._final_warmup_lr = tf.cast(after_warmup_lr_sched, dtype=tf.float32)
def __call__(self, step: int):
global_step = tf.cast(step, dtype=tf.float32)
linear_warmup_lr = (
self._init_warmup_lr + global_step / self._warmup_steps *
(self._final_warmup_lr - self._init_warmup_lr))
if isinstance(self._after_warmup_lr_sched,
tf_keras.optimizers.schedules.LearningRateSchedule):
after_warmup_lr = self._after_warmup_lr_sched(step)
else:
after_warmup_lr = tf.cast(self._after_warmup_lr_sched, dtype=tf.float32)
lr = tf.cond(global_step < self._warmup_steps,
lambda: linear_warmup_lr,
lambda: after_warmup_lr)
return lr
def get_config(self) -> Mapping[str, Any]:
if isinstance(self._after_warmup_lr_sched,
tf_keras.optimizers.schedules.LearningRateSchedule):
config = {
"after_warmup_lr_sched": self._after_warmup_lr_sched.get_config()} # pytype: disable=attribute-error
else:
config = {"after_warmup_lr_sched": self._after_warmup_lr_sched} # pytype: disable=attribute-error
config.update({
"warmup_steps": self._warmup_steps,
"warmup_learning_rate": self._init_warmup_lr,
"name": self._name
})
return config
class PolynomialWarmUp(tf_keras.optimizers.schedules.LearningRateSchedule):
"""Applies polynomial warmup schedule on a given learning rate decay schedule."""
def __init__(self,
after_warmup_lr_sched: Union[
tf_keras.optimizers.schedules.LearningRateSchedule, float],
warmup_steps: int,
power: float = 1.0,
name: str = "PolynomialWarmup"):
super().__init__()
if isinstance(after_warmup_lr_sched,
tf_keras.optimizers.schedules.LearningRateSchedule):
self._initial_learning_rate = after_warmup_lr_sched(warmup_steps)
else:
self._initial_learning_rate = tf.cast(
after_warmup_lr_sched, dtype=tf.float32)
self._warmup_steps = warmup_steps
self._power = power
self._after_warmup_lr_sched = after_warmup_lr_sched
self._name = name
def __call__(self, step):
with tf.name_scope(self._name or "PolynomialWarmUp") as name:
# Implements polynomial warmup. i.e., if global_step < warmup_steps, the
# learning rate will be `global_step/num_warmup_steps * init_lr`.
global_step_float = tf.cast(step, tf.float32)
warmup_steps_float = tf.cast(self._warmup_steps, tf.float32)
if self._warmup_steps <= 0:
warmup_percent_done = 1.0
else:
# A zero `step` may cause Inf. So make `step` positive.
step_non_zero = tf.math.maximum(global_step_float, 1.0)
warmup_percent_done = step_non_zero / warmup_steps_float
warmup_learning_rate = (
self._initial_learning_rate *
tf.math.pow(warmup_percent_done, self._power))
if isinstance(self._after_warmup_lr_sched,
tf_keras.optimizers.schedules.LearningRateSchedule):
after_warmup_lr = self._after_warmup_lr_sched(step)
else:
after_warmup_lr = tf.cast(self._after_warmup_lr_sched, dtype=tf.float32)
return tf.cond(
global_step_float < warmup_steps_float,
lambda: warmup_learning_rate,
lambda: after_warmup_lr,
name=name)
def get_config(self) -> Mapping[str, Any]:
if isinstance(self._after_warmup_lr_sched,
tf_keras.optimizers.schedules.LearningRateSchedule):
config = {
"after_warmup_lr_sched": self._after_warmup_lr_sched.get_config()} # pytype: disable=attribute-error
else:
config = {"after_warmup_lr_sched": self._after_warmup_lr_sched} # pytype: disable=attribute-error
config.update({
"warmup_steps": self._warmup_steps,
"power": self._power,
"name": self._name
})
return config
class DirectPowerDecay(tf_keras.optimizers.schedules.LearningRateSchedule):
"""Learning rate schedule follows lr * (step)^power."""
def __init__(self,
initial_learning_rate: float,
power: float = 1.0,
name: str = "DirectPowerDecay"):
"""Initialize configuration of the learning rate schedule.
Args:
initial_learning_rate: The initial learning rate.
power: The order of the polynomial.
name: Optional, name of learning rate schedule.
"""
super().__init__()
self._initial_learning_rate = initial_learning_rate
self._power = power
self._name = name
def __call__(self, step):
with tf.name_scope(self._name or "DirectPowerDecay"):
step = tf.cast(step, tf.float32)
learning_rate = self._initial_learning_rate
# A zero `step` may cause Inf. So make `step` positive.
step_non_zero = tf.math.maximum(step, 1.0)
learning_rate *= tf.math.pow(step_non_zero, self._power)
return learning_rate
def get_config(self):
"""Get the configuration of the learning rate schedule."""
return {
"initial_learning_rate": self._initial_learning_rate,
"power": self._power,
"name": self._name,
}
class PowerAndLinearDecay(tf_keras.optimizers.schedules.LearningRateSchedule):
"""Learning rate schedule with multiplied by linear decay at the end.
The schedule has the following behavoir.
Let offset_step = step - offset.
1) offset_step < 0, the actual learning rate equals initial_learning_rate.
2) offset_step <= total_decay_steps * (1 - linear_decay_fraction), the
actual learning rate equals lr * offset_step^power.
3) total_decay_steps * (1 - linear_decay_fraction) <= offset_step <
total_decay_steps, the actual learning rate equals lr * offset_step^power *
(total_decay_steps - offset_step) / (total_decay_steps *
linear_decay_fraction).
4) offset_step >= total_decay_steps, the actual learning rate equals zero.
"""
def __init__(self,
initial_learning_rate: float,
total_decay_steps: int,
power: float = 1.0,
linear_decay_fraction: float = 0.1,
offset: int = 0,
name: str = "PowerAndLinearDecay"):
"""Initialize configuration of the learning rate schedule.
Args:
initial_learning_rate: The initial learning rate.
total_decay_steps: The total number of steps for power + linear decay.
power: The order of the polynomial.
linear_decay_fraction: In the last `linear_decay_fraction` steps, the
learning rate will be multiplied by a linear decay.
offset: The offset applied to steps.
name: Optional, name of learning rate schedule.
"""
super().__init__()
self._initial_learning_rate = initial_learning_rate
self._total_decay_steps = total_decay_steps
self._power = power
self._linear_decay_fraction = linear_decay_fraction
self._offset = offset
self._name = name
def __call__(self, step):
with tf.name_scope(self._name or "PowerAndLinearDecay"):
step = tf.cast(step - self._offset, tf.float32)
learning_rate = self._initial_learning_rate
# A zero `step` may cause Inf. So make `step` positive.
step_non_zero = tf.math.maximum(step, 1.0)
learning_rate *= tf.math.pow(step_non_zero, self._power)
if self._total_decay_steps * self._linear_decay_fraction > 0:
learning_rate *= tf.minimum(
1.0, (self._total_decay_steps - step) /
(self._total_decay_steps * self._linear_decay_fraction))
learning_rate = tf.maximum(0.0, learning_rate)
return learning_rate
def get_config(self):
"""Get the configuration of the learning rate schedule."""
return {
"initial_learning_rate": self._initial_learning_rate,
"total_decay_steps": self._total_decay_steps,
"power": self._power,
"linear_decay_fraction": self._linear_decay_fraction,
"offset": self._offset,
"name": self._name,
}
class PowerDecayWithOffset(tf_keras.optimizers.schedules.LearningRateSchedule):
"""Power learning rate decay with offset.
Learning rate equals to `pre_offset_learning_rate` if `step` < `offset`.
Otherwise, learning rate equals to lr * (step - offset)^power.
"""
def __init__(self,
initial_learning_rate: float,
power: float = 1.0,
offset: int = 0,
pre_offset_learning_rate: float = 1.0e6,
name: str = "PowerDecayWithOffset"):
"""Initialize configuration of the learning rate schedule.
Args:
initial_learning_rate: The initial learning rate.
power: The order of the polynomial.
offset: The offset when computing the power decay.
pre_offset_learning_rate: The maximum learning rate we'll use.
name: Optional, name of learning rate schedule.
"""
super().__init__()
self._initial_learning_rate = initial_learning_rate
self._power = power
self._offset = offset
self._pre_offset_lr = pre_offset_learning_rate
self._name = name
def __call__(self, step):
with tf.name_scope(self._name or "PowerDecayWithOffset"):
step = tf.cast(step, tf.float32)
lr_after_offset = tf.math.pow(
tf.math.maximum(step - self._offset, 1.0), self._power) * (
self._initial_learning_rate)
sign = tf.cast(step > self._offset, tf.float32)
lr_combined = (1.0 - sign) * self._pre_offset_lr + sign * lr_after_offset
# Power may give infinitely large LR. So cap it with pre_offset_lr.
return tf.math.minimum(lr_combined, self._pre_offset_lr)
def get_config(self):
"""Get the configuration of the learning rate schedule."""
return {
"initial_learning_rate": self._initial_learning_rate,
"power": self._power,
"offset": self._offset,
"pre_offset_learning_rate": self._pre_offset_lr,
"name": self._name,
}
class StepCosineDecayWithOffset(
tf_keras.optimizers.schedules.LearningRateSchedule):
"""Stepwise cosine learning rate decay with offset.
Learning rate is equivalent to one or more cosine decay(s) starting and
ending at each interval.
ExampleL
```python
boundaries: [100000, 110000]
values: [1.0, 0.5]
lr_decayed_fn = (
lr_schedule.StepCosineDecayWithOffset(
boundaries,
values))
```
from 0 to 100000 step, it will cosine decay from 1.0 to 0.5
from 100000 to 110000 step, it cosine decay from 0.5 to 0.0
"""
def __init__(self,
boundaries,
values,
offset: int = 0,
name: str = "StepCosineDecayWithOffset"):
"""Initialize configuration of the learning rate schedule.
Args:
boundaries: A list of `Tensor`s or `int`s with strictly
increasing entries, and with all elements having the same type as the
optimizer step.
values: A list of `Tensor`s or `float`s that specifies the
values for the intervals defined by `boundaries`. It should have one
more element than `boundaries`, and all elements should have the same
type.
offset: The offset when computing the power decay.
name: Optional, name of learning rate schedule.
"""
super().__init__()
self.values = values
self.boundaries = boundaries
self.offset = offset
self.name = name
if len(self.values) < 1:
raise ValueError(f"Expect non empty {self.values}")
if len(self.boundaries) != len(self.values):
raise ValueError(
"Boundaries length is equal to learning rate levels length"
f"{len(self.boundaries)} != {len(self.values)}")
self.total_steps = (
[boundaries[i + 1] - boundaries[i] for i in range(len(boundaries) - 1)
] + [0])
def __call__(self, global_step):
with tf.name_scope(self.name or "StepCosineDecayWithOffset"):
global_step = tf.cast(global_step - self.offset, tf.float32)
lr_levels = self.values
lr_steps = self.boundaries
level_total_steps = self.total_steps
num_levels = len(lr_levels)
init_lr = lr_levels[0]
next_init_lr = lr_levels[1] if num_levels > 1 else 0.
init_total_steps = level_total_steps[0]
cosine_learning_rate = ((init_lr - next_init_lr) * (tf.cos(
tf.constant(math.pi) * (global_step) /
(init_total_steps)) + 1.0) / 2.0 + next_init_lr)
learning_rate = cosine_learning_rate
for i in range(1, num_levels):
next_init_lr = lr_levels[i]
next_start_step = lr_steps[i]
next_total_steps = level_total_steps[i]
next_next_init_lr = lr_levels[i + 1] if num_levels > i + 1 else 0.
next_cosine_learning_rate = ((next_init_lr - next_next_init_lr) *
(tf.cos(
tf.constant(math.pi) *
(global_step - next_start_step) /
(next_total_steps)) + 1.0) / 2.0 +
next_next_init_lr)
learning_rate = tf.where(global_step >= next_start_step,
next_cosine_learning_rate, learning_rate)
return learning_rate
def get_config(self):
return {
"boundaries": self.boundaries,
"values": self.values,
"offset": self.offset,
"name": self.name
}
|