File size: 10,539 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93528c6
 
 
 
 
 
 
 
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Optimizer factory class."""
from typing import Callable, List, Optional, Tuple, Union

import gin
import tensorflow as tf, tf_keras

from official.modeling.optimization import slide_optimizer
from official.modeling.optimization import adafactor_optimizer
from official.modeling.optimization import ema_optimizer
from official.modeling.optimization import lamb
from official.modeling.optimization import lars
from official.modeling.optimization import legacy_adamw
from official.modeling.optimization import lr_schedule
from official.modeling.optimization.configs import optimization_config as opt_cfg

# Optimizer CLS to be used in both legacy and new path.
SHARED_OPTIMIZERS = {
    'sgd_experimental': tf_keras.optimizers.experimental.SGD,
    'adam_experimental': tf_keras.optimizers.experimental.Adam,
    'adamw': legacy_adamw.AdamWeightDecay,
    'adamw_experimental': tf_keras.optimizers.experimental.AdamW,
    'lamb': lamb.LAMB,
    'lars': lars.LARS,
    'slide': slide_optimizer.SLIDE,
    'adafactor': adafactor_optimizer.Adafactor,
    'adafactor_keras': tf_keras.optimizers.Adafactor,
}

LEGACY_OPTIMIZERS_CLS = {
    'sgd': tf_keras.optimizers.legacy.SGD,
    'adam': tf_keras.optimizers.legacy.Adam,
    'rmsprop': tf_keras.optimizers.legacy.RMSprop,
    'adagrad': tf_keras.optimizers.legacy.Adagrad,
}
LEGACY_OPTIMIZERS_CLS.update(SHARED_OPTIMIZERS)

NEW_OPTIMIZERS_CLS = {
    'sgd': tf_keras.optimizers.experimental.SGD,
    'adam': tf_keras.optimizers.experimental.Adam,
    'rmsprop': tf_keras.optimizers.experimental.RMSprop,
    'adagrad': tf_keras.optimizers.experimental.Adagrad,
}
NEW_OPTIMIZERS_CLS.update(SHARED_OPTIMIZERS)

LR_CLS = {
    'stepwise': lr_schedule.PiecewiseConstantDecayWithOffset,
    'polynomial': lr_schedule.PolynomialDecayWithOffset,
    'exponential': lr_schedule.ExponentialDecayWithOffset,
    'cosine': lr_schedule.CosineDecayWithOffset,
    'power': lr_schedule.DirectPowerDecay,
    'power_linear': lr_schedule.PowerAndLinearDecay,
    'power_with_offset': lr_schedule.PowerDecayWithOffset,
    'step_cosine_with_offset': lr_schedule.StepCosineDecayWithOffset,
}

WARMUP_CLS = {
    'linear': lr_schedule.LinearWarmup,
    'polynomial': lr_schedule.PolynomialWarmUp
}


def register_optimizer_cls(key: str,
                           optimizer_config_cls: Union[
                               tf_keras.optimizers.Optimizer,
                               tf_keras.optimizers.legacy.Optimizer,
                               tf_keras.optimizers.experimental.Optimizer
                           ],
                           use_legacy_optimizer: bool = True):
  """Register customize optimizer cls.

  The user will still need to subclass data classes in
  configs.optimization_config to be used with OptimizerFactory.

  Args:
    key: A string to that the optimizer_config_cls is registered with.
    optimizer_config_cls: A class which inherits tf_keras.optimizers.Optimizer.
    use_legacy_optimizer: A boolean that indicates if using legacy optimizers.
  """
  if use_legacy_optimizer:
    if key in LEGACY_OPTIMIZERS_CLS:
      raise ValueError('%s already registered in LEGACY_OPTIMIZERS_CLS.' % key)
    LEGACY_OPTIMIZERS_CLS[key] = optimizer_config_cls
  else:
    if key in NEW_OPTIMIZERS_CLS:
      raise ValueError('%s already registered in NEW_OPTIMIZERS_CLS.' % key)
    NEW_OPTIMIZERS_CLS[key] = optimizer_config_cls


class OptimizerFactory:
  """Optimizer factory class.

  This class builds learning rate and optimizer based on an optimization config.
  To use this class, you need to do the following:
  (1) Define optimization config, this includes optimizer, and learning rate
      schedule.
  (2) Initialize the class using the optimization config.
  (3) Build learning rate.
  (4) Build optimizer.

  This is a typical example for using this class:

  ```
  params = {
        'optimizer': {
            'type': 'sgd',
            'sgd': {'momentum': 0.9}
        },
        'learning_rate': {
            'type': 'stepwise',
            'stepwise': {'boundaries': [10000, 20000],
                         'values': [0.1, 0.01, 0.001]}
        },
        'warmup': {
            'type': 'linear',
            'linear': {'warmup_steps': 500, 'warmup_learning_rate': 0.01}
        }
    }
  opt_config = OptimizationConfig(params)
  opt_factory = OptimizerFactory(opt_config)
  lr = opt_factory.build_learning_rate()
  optimizer = opt_factory.build_optimizer(lr)
  ```
  """

  def __init__(self, config: opt_cfg.OptimizationConfig):
    """Initializing OptimizerFactory.

    Args:
      config: OptimizationConfig instance contain optimization config.
    """
    self._config = config
    self._optimizer_config = config.optimizer.get()
    self._optimizer_type = config.optimizer.type

    self._use_ema = config.ema is not None
    self._ema_config = config.ema

    if self._optimizer_config is None:
      raise ValueError('Optimizer type must be specified')

    self._lr_config = config.learning_rate.get()
    self._lr_type = config.learning_rate.type

    if self._lr_type is None:
      raise ValueError('Learning rate type must be specified')

    self._warmup_config = config.warmup.get()
    self._warmup_type = config.warmup.type

  def build_learning_rate(self):
    """Build learning rate.

    Builds learning rate from config. Learning rate schedule is built according
    to the learning rate config. If learning rate type is consant,
    lr_config.learning_rate is returned.

    Returns:
      tf_keras.optimizers.schedules.LearningRateSchedule instance. If
      learning rate type is consant, lr_config.learning_rate is returned.
    """
    if self._lr_type == 'constant':
      lr = self._lr_config.learning_rate
    else:
      lr = LR_CLS[self._lr_type](**self._lr_config.as_dict())

    if self._warmup_config:
      lr = WARMUP_CLS[self._warmup_type](lr, **self._warmup_config.as_dict())

    return lr

  @gin.configurable
  def build_optimizer(
      self,
      lr: Union[tf_keras.optimizers.schedules.LearningRateSchedule, float],
      gradient_aggregator: Optional[Callable[
          [List[Tuple[tf.Tensor, tf.Tensor]]], List[Tuple[tf.Tensor,
                                                          tf.Tensor]]]] = None,
      gradient_transformers: Optional[List[Callable[
          [List[Tuple[tf.Tensor, tf.Tensor]]], List[Tuple[tf.Tensor,
                                                          tf.Tensor]]]]] = None,
      postprocessor: Optional[Callable[[tf_keras.optimizers.Optimizer],
                                       tf_keras.optimizers.Optimizer]] = None,
      use_legacy_optimizer: bool = True):
    """Build optimizer.

    Builds optimizer from config. It takes learning rate as input, and builds
    the optimizer according to the optimizer config. Typically, the learning
    rate built using self.build_lr() is passed as an argument to this method.

    Args:
      lr: A floating point value, or a
        tf_keras.optimizers.schedules.LearningRateSchedule instance.
      gradient_aggregator: Optional function to overwrite gradient aggregation.
      gradient_transformers: Optional list of functions to use to transform
        gradients before applying updates to Variables. The functions are
        applied after gradient_aggregator. The functions should accept and
        return a list of (gradient, variable) tuples. clipvalue, clipnorm,
        global_clipnorm should not be set when gradient_transformers is passed.
      postprocessor: An optional function for postprocessing the optimizer. It
        takes an optimizer and returns an optimizer.
      use_legacy_optimizer: A boolean that indicates if using legacy optimizers.

    Returns:
      `tf_keras.optimizers.legacy.Optimizer` or
      `tf_keras.optimizers.experimental.Optimizer` instance.
    """

    optimizer_dict = self._optimizer_config.as_dict()
    ## Delete clipnorm, clipvalue, global_clipnorm if None
    if optimizer_dict['clipnorm'] is None:
      del optimizer_dict['clipnorm']
    if optimizer_dict['clipvalue'] is None:
      del optimizer_dict['clipvalue']
    if optimizer_dict['global_clipnorm'] is None:
      del optimizer_dict['global_clipnorm']

    optimizer_dict['learning_rate'] = lr
    if gradient_aggregator is not None:
      optimizer_dict['gradient_aggregator'] = gradient_aggregator
    if gradient_transformers is not None:
      optimizer_dict['gradient_transformers'] = gradient_transformers

    if use_legacy_optimizer:
      optimizer = LEGACY_OPTIMIZERS_CLS[self._optimizer_type](**optimizer_dict)
    else:
      if 'decay' in optimizer_dict:
        raise ValueError(
            '`decay` is deprecated in new Keras optimizer, please reflect the '
            'decay logic in `lr` or set `use_legacy_optimizer=True` to use the '
            'legacy optimizer.')
      optimizer = NEW_OPTIMIZERS_CLS[self._optimizer_type](**optimizer_dict)

    if self._use_ema:
      if not use_legacy_optimizer:
        raise ValueError(
            'EMA can only work with the legacy optimizer, please set '
            '`use_legacy_optimizer=True`.')
      optimizer = ema_optimizer.ExponentialMovingAverage(
          optimizer, **self._ema_config.as_dict())
    if postprocessor:
      optimizer = postprocessor(optimizer)
    if isinstance(optimizer, tf_keras.optimizers.Optimizer):
      return optimizer
    # The following check makes sure the function won't break in older TF
    # version because of missing the experimental/legacy package.
    if hasattr(tf_keras.optimizers, 'experimental'):
      if isinstance(optimizer, tf_keras.optimizers.experimental.Optimizer):
        return optimizer
    if hasattr(tf_keras.optimizers, 'legacy'):
      if isinstance(optimizer, tf_keras.optimizers.legacy.Optimizer):
        return optimizer
    raise TypeError('OptimizerFactory.build_optimizer returning a '
                    'non-optimizer object: {}'.format(optimizer))