File size: 12,156 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93528c6
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Common TF utilities."""

import functools
import inspect
import six
import tensorflow as tf, tf_keras

from tensorflow.python.util import deprecation
from official.modeling import activations


@deprecation.deprecated(
    None,
    "tf_keras.layers.Layer supports multiple positional args and kwargs as "
    "input tensors. pack/unpack inputs to override __call__ is no longer "
    "needed.")
def pack_inputs(inputs):
  """Pack a list of `inputs` tensors to a tuple.

  Args:
    inputs: a list of tensors.

  Returns:
    a tuple of tensors. if any input is None, replace it with a special constant
    tensor.
  """
  inputs = tf.nest.flatten(inputs)
  outputs = []
  for x in inputs:
    if x is None:
      outputs.append(tf.constant(0, shape=[], dtype=tf.int32))
    else:
      outputs.append(x)
  return tuple(outputs)


@deprecation.deprecated(
    None,
    "tf_keras.layers.Layer supports multiple positional args and kwargs as "
    "input tensors. pack/unpack inputs to override __call__ is no longer "
    "needed.")
def unpack_inputs(inputs):
  """unpack a tuple of `inputs` tensors to a tuple.

  Args:
    inputs: a list of tensors.

  Returns:
    a tuple of tensors. if any input is a special constant tensor, replace it
    with None.
  """
  inputs = tf.nest.flatten(inputs)
  outputs = []
  for x in inputs:
    if is_special_none_tensor(x):
      outputs.append(None)
    else:
      outputs.append(x)
  x = tuple(outputs)

  # To trick the very pointless 'unbalanced-tuple-unpacking' pylint check
  # from triggering.
  if len(x) == 1:
    return x[0]
  return tuple(outputs)


def is_special_none_tensor(tensor):
  """Checks if a tensor is a special None Tensor."""
  return tensor.shape.ndims == 0 and tensor.dtype == tf.int32


def get_activation(identifier, use_keras_layer=False, **kwargs):
  """Maps an identifier to a Python function, e.g., "relu" => `tf.nn.relu`.

  It checks string first and if it is one of customized activation not in TF,
  the corresponding activation will be returned. For non-customized activation
  names and callable identifiers, always fallback to tf_keras.activations.get.

  Prefers using keras layers when use_keras_layer=True. Now it only supports
  'relu', 'linear', 'identity', 'swish', 'mish', 'leaky_relu', and 'gelu'.

  Args:
    identifier: String name of the activation function or callable.
    use_keras_layer: If True, use keras layer if identifier is allow-listed.
    **kwargs: Keyword arguments to use to instantiate an activation function.
      Available only for 'leaky_relu' and 'gelu' when using keras layers.
      For example: get_activation('leaky_relu', use_keras_layer=True, alpha=0.1)

  Returns:
    A Python function corresponding to the activation function or a keras
    activation layer when use_keras_layer=True.
  """
  if isinstance(identifier, six.string_types):
    identifier = str(identifier).lower()
    if use_keras_layer:
      keras_layer_allowlist = {
          "relu": "relu",
          "linear": "linear",
          "identity": "linear",
          "swish": "swish",
          "sigmoid": "sigmoid",
          "relu6": tf.nn.relu6,
          "leaky_relu": functools.partial(tf.nn.leaky_relu, **kwargs),
          "hard_swish": activations.hard_swish,
          "hard_sigmoid": activations.hard_sigmoid,
          "mish": activations.mish,
          "gelu": functools.partial(tf.nn.gelu, **kwargs),
      }
      if identifier in keras_layer_allowlist:
        return tf_keras.layers.Activation(keras_layer_allowlist[identifier])
    name_to_fn = {
        "gelu": activations.gelu,
        "simple_swish": activations.simple_swish,
        "hard_swish": activations.hard_swish,
        "relu6": activations.relu6,
        "hard_sigmoid": activations.hard_sigmoid,
        "identity": activations.identity,
        "mish": activations.mish,
    }
    if identifier in name_to_fn:
      return tf_keras.activations.get(name_to_fn[identifier])
  return tf_keras.activations.get(identifier)


def get_shape_list(tensor, expected_rank=None, name=None):
  """Returns a list of the shape of tensor, preferring static dimensions.

  Args:
    tensor: A tf.Tensor object to find the shape of.
    expected_rank: (optional) int. The expected rank of `tensor`. If this is
      specified and the `tensor` has a different rank, and exception will be
      thrown.
    name: Optional name of the tensor for the error message.

  Returns:
    A list of dimensions of the shape of tensor. All static dimensions will
    be returned as python integers, and dynamic dimensions will be returned
    as tf.Tensor scalars.
  """
  if expected_rank is not None:
    assert_rank(tensor, expected_rank, name)

  shape = tensor.shape.as_list()

  non_static_indexes = []
  for (index, dim) in enumerate(shape):
    if dim is None:
      non_static_indexes.append(index)

  if not non_static_indexes:
    return shape

  dyn_shape = tf.shape(tensor)
  for index in non_static_indexes:
    shape[index] = dyn_shape[index]
  return shape


def assert_rank(tensor, expected_rank, name=None):
  """Raises an exception if the tensor rank is not of the expected rank.

  Args:
    tensor: A tf.Tensor to check the rank of.
    expected_rank: Python integer or list of integers, expected rank.
    name: Optional name of the tensor for the error message.

  Raises:
    ValueError: If the expected shape doesn't match the actual shape.
  """
  expected_rank_dict = {}
  if isinstance(expected_rank, six.integer_types):
    expected_rank_dict[expected_rank] = True
  else:
    for x in expected_rank:
      expected_rank_dict[x] = True

  actual_rank = tensor.shape.ndims
  if actual_rank not in expected_rank_dict:
    raise ValueError(
        "For the tensor `%s`, the actual tensor rank `%d` (shape = %s) is not "
        "equal to the expected tensor rank `%s`" %
        (name, actual_rank, str(tensor.shape), str(expected_rank)))


def safe_mean(losses):
  """Computes a safe mean of the losses.

  Args:
    losses: `Tensor` whose elements contain individual loss measurements.

  Returns:
    A scalar representing the mean of `losses`. If `num_present` is zero,
      then zero is returned.
  """
  total = tf.reduce_sum(losses)
  num_elements = tf.cast(tf.size(losses), dtype=losses.dtype)
  return tf.math.divide_no_nan(total, num_elements)


def get_replica_id():
  """Gets replica id depending on the environment."""
  context = tf.distribute.get_replica_context()
  if context is not None:
    return context.replica_id_in_sync_group
  else:
    raise RuntimeError("Unknown replica context. The `get_replica_id` method "
                       "relies on TF 2.x tf.distribute API.")


def cross_replica_concat(value, axis, name="cross_replica_concat"):
  """Concatenates the given `value` across (GPU/TPU) cores, along `axis`.

  In general, each core ("replica") will pass a
  replica-specific value as `value` (corresponding to some element of a
  data-parallel computation taking place across replicas).

  The resulting concatenated `Tensor` will have the same shape as `value` for
  all dimensions except `axis`, where it will be larger by a factor of the
  number of replicas. It will also have the same `dtype` as `value`.

  The position of a given replica's `value` within the resulting concatenation
  is determined by that replica's replica ID. For
  example:

  With `value` for replica 0 given as

      0 0 0
      0 0 0

  and `value` for replica 1 given as

      1 1 1
      1 1 1

  the resulting concatenation along axis 0 will be

      0 0 0
      0 0 0
      1 1 1
      1 1 1

  and this result will be identical across all replicas.

  Note that this API only works in TF2 with `tf.distribute`.

  Args:
    value: The `Tensor` to concatenate across replicas. Each replica will have a
      different value for this `Tensor`, and these replica-specific values will
      be concatenated.
    axis: The axis along which to perform the concatenation as a Python integer
      (not a `Tensor`). E.g., `axis=0` to concatenate along the batch dimension.
    name: A name for the operation (used to create a name scope).

  Returns:
    The result of concatenating `value` along `axis` across replicas.

  Raises:
    RuntimeError: when the batch (0-th) dimension is None.
  """
  with tf.name_scope(name):
    context = tf.distribute.get_replica_context()
    # Typically this could be hit only if the tensor is derived from a
    # dataset with finite epochs and drop_remainder=False, where the last
    # batch could of different batch size and then the dim-0 is of dynamic
    # shape.
    if value.shape.as_list()[0] is None:
      raise RuntimeError(f"{value} has unknown batch.")
    return context.all_gather(value, axis=axis)


def clone_initializer(initializer):
  # Keras initializer is going to be stateless, which mean reusing the same
  # initializer will produce same init value when the shapes are the same.
  if isinstance(initializer, tf_keras.initializers.Initializer):
    return initializer.__class__.from_config(initializer.get_config())
  # When the input is string/dict or other serialized configs, caller will
  # create a new keras Initializer instance based on that, and we don't need to
  # do anything
  return initializer


def serialize_keras_object(obj):
  if hasattr(tf_keras.utils, "legacy"):
    return tf_keras.utils.legacy.serialize_keras_object(obj)
  else:
    return tf_keras.utils.serialize_keras_object(obj)


def deserialize_keras_object(
    config, module_objects=None, custom_objects=None, printable_module_name=None
):
  if hasattr(tf_keras.utils, "legacy"):
    return tf_keras.utils.legacy.deserialize_keras_object(
        config, custom_objects, module_objects, printable_module_name
    )
  else:
    return tf_keras.utils.deserialize_keras_object(
        config, custom_objects, module_objects, printable_module_name
    )


def serialize_layer(layer, use_legacy_format=False):
  if (
      "use_legacy_format"
      in inspect.getfullargspec(tf_keras.layers.serialize).args
  ):
    return tf_keras.layers.serialize(layer, use_legacy_format=use_legacy_format)
  else:
    return tf_keras.layers.serialize(layer)


def serialize_initializer(initializer, use_legacy_format=False):
  if (
      "use_legacy_format"
      in inspect.getfullargspec(tf_keras.initializers.serialize).args
  ):
    return tf_keras.initializers.serialize(
        initializer, use_legacy_format=use_legacy_format
    )
  else:
    return tf_keras.initializers.serialize(initializer)


def serialize_regularizer(regularizer, use_legacy_format=False):
  if (
      "use_legacy_format"
      in inspect.getfullargspec(tf_keras.regularizers.serialize).args
  ):
    return tf_keras.regularizers.serialize(
        regularizer, use_legacy_format=use_legacy_format
    )
  else:
    return tf_keras.regularizers.serialize(regularizer)


def serialize_constraint(constraint, use_legacy_format=False):
  if (
      "use_legacy_format"
      in inspect.getfullargspec(tf_keras.constraints.serialize).args
  ):
    return tf_keras.constraints.serialize(
        constraint, use_legacy_format=use_legacy_format
    )
  else:
    return tf_keras.constraints.serialize(constraint)


def serialize_activation(activation, use_legacy_format=False):
  if (
      "use_legacy_format"
      in inspect.getfullargspec(tf_keras.activations.serialize).args
  ):
    return tf_keras.activations.serialize(
        activation, use_legacy_format=use_legacy_format
    )
  else:
    return tf_keras.activations.serialize(activation)