Spaces:
Runtime error
Runtime error
File size: 30,944 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Transformer Encoders.
Includes configurations and factory methods.
"""
import dataclasses
from typing import Optional, Sequence, Union
import gin
import tensorflow as tf, tf_keras
from official.modeling import hyperparams
from official.modeling import tf_utils
from official.nlp.modeling import layers
from official.nlp.modeling import networks
from official.projects.bigbird import encoder as bigbird_encoder
@dataclasses.dataclass
class BertEncoderConfig(hyperparams.Config):
"""BERT encoder configuration."""
vocab_size: int = 30522
hidden_size: int = 768
num_layers: int = 12
num_attention_heads: int = 12
hidden_activation: str = "gelu"
intermediate_size: int = 3072
dropout_rate: float = 0.1
attention_dropout_rate: float = 0.1
max_position_embeddings: int = 512
type_vocab_size: int = 2
initializer_range: float = 0.02
embedding_size: Optional[int] = None
output_range: Optional[int] = None
return_all_encoder_outputs: bool = False
return_attention_scores: bool = False
# Pre/Post-LN Transformer
norm_first: bool = False
@dataclasses.dataclass
class FunnelEncoderConfig(hyperparams.Config):
"""Funnel encoder configuration."""
vocab_size: int = 30522
hidden_size: int = 768
num_layers: int = 12
num_attention_heads: int = 12
max_position_embeddings: int = 512
type_vocab_size: int = 16
inner_dim: int = 3072
hidden_activation: str = "gelu"
approx_gelu: bool = True
dropout_rate: float = 0.1
attention_dropout_rate: float = 0.1
pool_type: str = "max"
pool_stride: Union[int, Sequence[Union[int, float]]] = 2
unpool_length: int = 0
initializer_range: float = 0.02
output_range: Optional[int] = None
embedding_width: Optional[int] = None
embedding_layer: Optional[tf_keras.layers.Layer] = None
norm_first: bool = False
share_rezero: bool = False
append_dense_inputs: bool = False
transformer_cls: str = "TransformerEncoderBlock"
@dataclasses.dataclass
class MobileBertEncoderConfig(hyperparams.Config):
"""MobileBERT encoder configuration.
Attributes:
word_vocab_size: number of words in the vocabulary.
word_embed_size: word embedding size.
type_vocab_size: number of word types.
max_sequence_length: maximum length of input sequence.
num_blocks: number of transformer block in the encoder model.
hidden_size: the hidden size for the transformer block.
num_attention_heads: number of attention heads in the transformer block.
intermediate_size: the size of the "intermediate" (a.k.a., feed forward)
layer.
hidden_activation: the non-linear activation function to apply to the
output of the intermediate/feed-forward layer.
hidden_dropout_prob: dropout probability for the hidden layers.
attention_probs_dropout_prob: dropout probability of the attention
probabilities.
intra_bottleneck_size: the size of bottleneck.
initializer_range: The stddev of the truncated_normal_initializer for
initializing all weight matrices.
use_bottleneck_attention: Use attention inputs from the bottleneck
transformation. If true, the following `key_query_shared_bottleneck`
will be ignored.
key_query_shared_bottleneck: whether to share linear transformation for keys
and queries.
num_feedforward_networks: number of stacked feed-forward networks.
normalization_type: the type of normalization_type, only 'no_norm' and
'layer_norm' are supported. 'no_norm' represents the element-wise linear
transformation for the student model, as suggested by the original
MobileBERT paper. 'layer_norm' is used for the teacher model.
classifier_activation: if using the tanh activation for the final
representation of the [CLS] token in fine-tuning.
"""
word_vocab_size: int = 30522
word_embed_size: int = 128
type_vocab_size: int = 2
max_sequence_length: int = 512
num_blocks: int = 24
hidden_size: int = 512
num_attention_heads: int = 4
intermediate_size: int = 4096
hidden_activation: str = "gelu"
hidden_dropout_prob: float = 0.1
attention_probs_dropout_prob: float = 0.1
intra_bottleneck_size: int = 1024
initializer_range: float = 0.02
use_bottleneck_attention: bool = False
key_query_shared_bottleneck: bool = False
num_feedforward_networks: int = 1
normalization_type: str = "layer_norm"
classifier_activation: bool = True
input_mask_dtype: str = "int32"
@dataclasses.dataclass
class AlbertEncoderConfig(hyperparams.Config):
"""ALBERT encoder configuration."""
vocab_size: int = 30000
embedding_width: int = 128
hidden_size: int = 768
num_layers: int = 12
num_attention_heads: int = 12
hidden_activation: str = "gelu"
intermediate_size: int = 3072
dropout_rate: float = 0.0
attention_dropout_rate: float = 0.0
max_position_embeddings: int = 512
type_vocab_size: int = 2
initializer_range: float = 0.02
@dataclasses.dataclass
class BigBirdEncoderConfig(hyperparams.Config):
"""BigBird encoder configuration."""
vocab_size: int = 50358
hidden_size: int = 768
num_layers: int = 12
num_attention_heads: int = 12
hidden_activation: str = "gelu"
intermediate_size: int = 3072
dropout_rate: float = 0.1
attention_dropout_rate: float = 0.1
# Pre/Post-LN Transformer
norm_first: bool = False
max_position_embeddings: int = 4096
num_rand_blocks: int = 3
block_size: int = 64
type_vocab_size: int = 16
initializer_range: float = 0.02
embedding_width: Optional[int] = None
use_gradient_checkpointing: bool = False
@dataclasses.dataclass
class KernelEncoderConfig(hyperparams.Config):
"""Linear encoder configuration."""
vocab_size: int = 30522
hidden_size: int = 768
num_layers: int = 12
num_attention_heads: int = 12
hidden_activation: str = "gelu"
intermediate_size: int = 3072
dropout_rate: float = 0.1
attention_dropout_rate: float = 0.1
# Pre/Post-LN Transformer
norm_first: bool = False
max_position_embeddings: int = 512
type_vocab_size: int = 2
initializer_range: float = 0.02
embedding_size: Optional[int] = None
feature_transform: str = "exp"
num_random_features: int = 256
redraw: bool = False
is_short_seq: bool = False
begin_kernel: int = 0
scale: Optional[float] = None
@dataclasses.dataclass
class ReuseEncoderConfig(hyperparams.Config):
"""Reuse encoder configuration."""
vocab_size: int = 30522
hidden_size: int = 768
num_layers: int = 12
num_attention_heads: int = 12
hidden_activation: str = "gelu"
intermediate_size: int = 3072
dropout_rate: float = 0.1
attention_dropout_rate: float = 0.1
max_position_embeddings: int = 512
type_vocab_size: int = 2
initializer_range: float = 0.02
embedding_size: Optional[int] = None
output_range: Optional[int] = None
return_all_encoder_outputs: bool = False
# Pre/Post-LN Transformer
norm_first: bool = False
# Reuse transformer
reuse_attention: int = -1
use_relative_pe: bool = False
pe_max_seq_length: int = 512
max_reuse_layer_idx: int = 6
@dataclasses.dataclass
class XLNetEncoderConfig(hyperparams.Config):
"""XLNet encoder configuration."""
vocab_size: int = 32000
num_layers: int = 24
hidden_size: int = 1024
num_attention_heads: int = 16
head_size: int = 64
inner_size: int = 4096
inner_activation: str = "gelu"
dropout_rate: float = 0.1
attention_dropout_rate: float = 0.1
attention_type: str = "bi"
bi_data: bool = False
tie_attention_biases: bool = False
memory_length: int = 0
same_length: bool = False
clamp_length: int = -1
reuse_length: int = 0
use_cls_mask: bool = False
embedding_width: int = 1024
initializer_range: float = 0.02
two_stream: bool = False
@dataclasses.dataclass
class QueryBertConfig(hyperparams.Config):
"""Query BERT encoder configuration."""
vocab_size: int = 30522
hidden_size: int = 768
num_layers: int = 12
num_attention_heads: int = 12
hidden_activation: str = "gelu"
intermediate_size: int = 3072
dropout_rate: float = 0.1
attention_dropout_rate: float = 0.1
max_position_embeddings: int = 512
type_vocab_size: int = 2
initializer_range: float = 0.02
embedding_size: Optional[int] = None
output_range: Optional[int] = None
return_all_encoder_outputs: bool = False
return_attention_scores: bool = False
# Pre/Post-LN Transformer
norm_first: bool = False
@dataclasses.dataclass
class FNetEncoderConfig(hyperparams.Config):
"""FNet encoder configuration."""
vocab_size: int = 30522
hidden_size: int = 768
num_layers: int = 12
num_attention_heads: int = 12
inner_activation: str = "gelu"
inner_dim: int = 3072
output_dropout: float = 0.1
attention_dropout: float = 0.1
max_sequence_length: int = 512
type_vocab_size: int = 2
initializer_range: float = 0.02
embedding_width: Optional[int] = None
output_range: Optional[int] = None
norm_first: bool = False
use_fft: bool = False
attention_layers: Sequence[int] = ()
@dataclasses.dataclass
class SparseMixerEncoderConfig(hyperparams.Config):
"""SparseMixer encoder configuration."""
vocab_size: int = 30522
hidden_size: int = 768
num_layers: int = 14
moe_layers: Sequence[int] = (5, 6, 7, 8)
attention_layers: Sequence[int] = (10, 11, 12, 13)
num_experts: int = 16
train_capacity_factor: float = 1.
eval_capacity_factor: float = 1.
examples_per_group: float = 1.
use_fft: bool = False
num_attention_heads: int = 8
max_sequence_length: int = 512
type_vocab_size: int = 2
inner_dim: int = 3072
inner_activation: str = "gelu"
output_dropout: float = 0.1
attention_dropout: float = 0.1
initializer_range: float = 0.02
output_range: Optional[int] = None
embedding_width: Optional[int] = None
norm_first: bool = False
@dataclasses.dataclass
class EncoderConfig(hyperparams.OneOfConfig):
"""Encoder configuration."""
type: Optional[str] = "bert"
albert: AlbertEncoderConfig = dataclasses.field(
default_factory=AlbertEncoderConfig
)
bert: BertEncoderConfig = dataclasses.field(default_factory=BertEncoderConfig)
bert_v2: BertEncoderConfig = dataclasses.field(
default_factory=BertEncoderConfig
)
bigbird: BigBirdEncoderConfig = dataclasses.field(
default_factory=BigBirdEncoderConfig
)
funnel: FunnelEncoderConfig = dataclasses.field(
default_factory=FunnelEncoderConfig
)
kernel: KernelEncoderConfig = dataclasses.field(
default_factory=KernelEncoderConfig
)
mobilebert: MobileBertEncoderConfig = dataclasses.field(
default_factory=MobileBertEncoderConfig
)
reuse: ReuseEncoderConfig = dataclasses.field(
default_factory=ReuseEncoderConfig
)
xlnet: XLNetEncoderConfig = dataclasses.field(
default_factory=XLNetEncoderConfig
)
query_bert: QueryBertConfig = dataclasses.field(
default_factory=QueryBertConfig
)
fnet: FNetEncoderConfig = dataclasses.field(default_factory=FNetEncoderConfig)
sparse_mixer: SparseMixerEncoderConfig = dataclasses.field(
default_factory=SparseMixerEncoderConfig
)
# If `any` is used, the encoder building relies on any.BUILDER.
any: hyperparams.Config = dataclasses.field(
default_factory=hyperparams.Config
)
@gin.configurable
def build_encoder(config: EncoderConfig,
embedding_layer: Optional[tf_keras.layers.Layer] = None,
encoder_cls=None,
bypass_config: bool = False):
"""Instantiate a Transformer encoder network from EncoderConfig.
Args:
config: the one-of encoder config, which provides encoder parameters of a
chosen encoder.
embedding_layer: an external embedding layer passed to the encoder.
encoder_cls: an external encoder cls not included in the supported encoders,
usually used by gin.configurable.
bypass_config: whether to ignore config instance to create the object with
`encoder_cls`.
Returns:
An encoder instance.
"""
if bypass_config:
return encoder_cls()
encoder_type = config.type
encoder_cfg = config.get()
if encoder_cls and encoder_cls.__name__ == "EncoderScaffold":
embedding_cfg = dict(
vocab_size=encoder_cfg.vocab_size,
type_vocab_size=encoder_cfg.type_vocab_size,
hidden_size=encoder_cfg.hidden_size,
max_seq_length=encoder_cfg.max_position_embeddings,
initializer=tf_keras.initializers.TruncatedNormal(
stddev=encoder_cfg.initializer_range),
dropout_rate=encoder_cfg.dropout_rate,
)
hidden_cfg = dict(
num_attention_heads=encoder_cfg.num_attention_heads,
intermediate_size=encoder_cfg.intermediate_size,
intermediate_activation=tf_utils.get_activation(
encoder_cfg.hidden_activation),
dropout_rate=encoder_cfg.dropout_rate,
attention_dropout_rate=encoder_cfg.attention_dropout_rate,
kernel_initializer=tf_keras.initializers.TruncatedNormal(
stddev=encoder_cfg.initializer_range),
)
kwargs = dict(
embedding_cfg=embedding_cfg,
hidden_cfg=hidden_cfg,
num_hidden_instances=encoder_cfg.num_layers,
pooled_output_dim=encoder_cfg.hidden_size,
pooler_layer_initializer=tf_keras.initializers.TruncatedNormal(
stddev=encoder_cfg.initializer_range),
return_all_layer_outputs=encoder_cfg.return_all_encoder_outputs,
dict_outputs=True)
return encoder_cls(**kwargs)
if encoder_type == "any":
encoder = encoder_cfg.BUILDER(encoder_cfg)
if not isinstance(encoder,
(tf.Module, tf_keras.Model, tf_keras.layers.Layer)):
raise ValueError("The BUILDER returns an unexpected instance. The "
"`build_encoder` should returns a tf.Module, "
"tf_keras.Model or tf_keras.layers.Layer. However, "
f"we get {encoder.__class__}")
return encoder
if encoder_type == "mobilebert":
return networks.MobileBERTEncoder(
word_vocab_size=encoder_cfg.word_vocab_size,
word_embed_size=encoder_cfg.word_embed_size,
type_vocab_size=encoder_cfg.type_vocab_size,
max_sequence_length=encoder_cfg.max_sequence_length,
num_blocks=encoder_cfg.num_blocks,
hidden_size=encoder_cfg.hidden_size,
num_attention_heads=encoder_cfg.num_attention_heads,
intermediate_size=encoder_cfg.intermediate_size,
intermediate_act_fn=encoder_cfg.hidden_activation,
hidden_dropout_prob=encoder_cfg.hidden_dropout_prob,
attention_probs_dropout_prob=encoder_cfg.attention_probs_dropout_prob,
intra_bottleneck_size=encoder_cfg.intra_bottleneck_size,
initializer_range=encoder_cfg.initializer_range,
use_bottleneck_attention=encoder_cfg.use_bottleneck_attention,
key_query_shared_bottleneck=encoder_cfg.key_query_shared_bottleneck,
num_feedforward_networks=encoder_cfg.num_feedforward_networks,
normalization_type=encoder_cfg.normalization_type,
classifier_activation=encoder_cfg.classifier_activation,
input_mask_dtype=encoder_cfg.input_mask_dtype)
if encoder_type == "albert":
return networks.AlbertEncoder(
vocab_size=encoder_cfg.vocab_size,
embedding_width=encoder_cfg.embedding_width,
hidden_size=encoder_cfg.hidden_size,
num_layers=encoder_cfg.num_layers,
num_attention_heads=encoder_cfg.num_attention_heads,
max_sequence_length=encoder_cfg.max_position_embeddings,
type_vocab_size=encoder_cfg.type_vocab_size,
intermediate_size=encoder_cfg.intermediate_size,
activation=tf_utils.get_activation(encoder_cfg.hidden_activation),
dropout_rate=encoder_cfg.dropout_rate,
attention_dropout_rate=encoder_cfg.attention_dropout_rate,
initializer=tf_keras.initializers.TruncatedNormal(
stddev=encoder_cfg.initializer_range),
dict_outputs=True)
if encoder_type == "bigbird":
# TODO(frederickliu): Support use_gradient_checkpointing and update
# experiments to use the EncoderScaffold only.
if encoder_cfg.use_gradient_checkpointing:
return bigbird_encoder.BigBirdEncoder(
vocab_size=encoder_cfg.vocab_size,
hidden_size=encoder_cfg.hidden_size,
num_layers=encoder_cfg.num_layers,
num_attention_heads=encoder_cfg.num_attention_heads,
intermediate_size=encoder_cfg.intermediate_size,
activation=tf_utils.get_activation(encoder_cfg.hidden_activation),
dropout_rate=encoder_cfg.dropout_rate,
attention_dropout_rate=encoder_cfg.attention_dropout_rate,
num_rand_blocks=encoder_cfg.num_rand_blocks,
block_size=encoder_cfg.block_size,
max_position_embeddings=encoder_cfg.max_position_embeddings,
type_vocab_size=encoder_cfg.type_vocab_size,
initializer=tf_keras.initializers.TruncatedNormal(
stddev=encoder_cfg.initializer_range),
embedding_width=encoder_cfg.embedding_width,
use_gradient_checkpointing=encoder_cfg.use_gradient_checkpointing)
embedding_cfg = dict(
vocab_size=encoder_cfg.vocab_size,
type_vocab_size=encoder_cfg.type_vocab_size,
hidden_size=encoder_cfg.hidden_size,
max_seq_length=encoder_cfg.max_position_embeddings,
initializer=tf_keras.initializers.TruncatedNormal(
stddev=encoder_cfg.initializer_range),
dropout_rate=encoder_cfg.dropout_rate)
attention_cfg = dict(
num_heads=encoder_cfg.num_attention_heads,
key_dim=int(encoder_cfg.hidden_size // encoder_cfg.num_attention_heads),
kernel_initializer=tf_keras.initializers.TruncatedNormal(
stddev=encoder_cfg.initializer_range),
max_rand_mask_length=encoder_cfg.max_position_embeddings,
num_rand_blocks=encoder_cfg.num_rand_blocks,
from_block_size=encoder_cfg.block_size,
to_block_size=encoder_cfg.block_size,
)
hidden_cfg = dict(
num_attention_heads=encoder_cfg.num_attention_heads,
intermediate_size=encoder_cfg.intermediate_size,
intermediate_activation=tf_utils.get_activation(
encoder_cfg.hidden_activation),
dropout_rate=encoder_cfg.dropout_rate,
attention_dropout_rate=encoder_cfg.attention_dropout_rate,
norm_first=encoder_cfg.norm_first,
kernel_initializer=tf_keras.initializers.TruncatedNormal(
stddev=encoder_cfg.initializer_range),
attention_cls=layers.BigBirdAttention,
attention_cfg=attention_cfg)
kwargs = dict(
embedding_cfg=embedding_cfg,
hidden_cls=layers.TransformerScaffold,
hidden_cfg=hidden_cfg,
num_hidden_instances=encoder_cfg.num_layers,
mask_cls=layers.BigBirdMasks,
mask_cfg=dict(block_size=encoder_cfg.block_size),
pooled_output_dim=encoder_cfg.hidden_size,
pooler_layer_initializer=tf_keras.initializers.TruncatedNormal(
stddev=encoder_cfg.initializer_range),
return_all_layer_outputs=False,
dict_outputs=True,
layer_idx_as_attention_seed=True)
return networks.EncoderScaffold(**kwargs)
if encoder_type == "funnel":
if encoder_cfg.hidden_activation == "gelu":
activation = tf_utils.get_activation(
encoder_cfg.hidden_activation,
approximate=encoder_cfg.approx_gelu)
else:
activation = tf_utils.get_activation(encoder_cfg.hidden_activation)
return networks.FunnelTransformerEncoder(
vocab_size=encoder_cfg.vocab_size,
hidden_size=encoder_cfg.hidden_size,
num_layers=encoder_cfg.num_layers,
num_attention_heads=encoder_cfg.num_attention_heads,
max_sequence_length=encoder_cfg.max_position_embeddings,
type_vocab_size=encoder_cfg.type_vocab_size,
inner_dim=encoder_cfg.inner_dim,
inner_activation=activation,
output_dropout=encoder_cfg.dropout_rate,
attention_dropout=encoder_cfg.attention_dropout_rate,
pool_type=encoder_cfg.pool_type,
pool_stride=encoder_cfg.pool_stride,
unpool_length=encoder_cfg.unpool_length,
initializer=tf_keras.initializers.TruncatedNormal(
stddev=encoder_cfg.initializer_range),
output_range=encoder_cfg.output_range,
embedding_width=encoder_cfg.embedding_width,
embedding_layer=embedding_layer,
norm_first=encoder_cfg.norm_first,
share_rezero=encoder_cfg.share_rezero,
append_dense_inputs=encoder_cfg.append_dense_inputs,
transformer_cls=encoder_cfg.transformer_cls,
)
if encoder_type == "kernel":
embedding_cfg = dict(
vocab_size=encoder_cfg.vocab_size,
type_vocab_size=encoder_cfg.type_vocab_size,
hidden_size=encoder_cfg.hidden_size,
max_seq_length=encoder_cfg.max_position_embeddings,
initializer=tf_keras.initializers.TruncatedNormal(
stddev=encoder_cfg.initializer_range),
dropout_rate=encoder_cfg.dropout_rate)
attention_cfg = dict(
num_heads=encoder_cfg.num_attention_heads,
key_dim=int(encoder_cfg.hidden_size // encoder_cfg.num_attention_heads),
kernel_initializer=tf_keras.initializers.TruncatedNormal(
stddev=encoder_cfg.initializer_range),
feature_transform=encoder_cfg.feature_transform,
num_random_features=encoder_cfg.num_random_features,
redraw=encoder_cfg.redraw,
is_short_seq=encoder_cfg.is_short_seq,
begin_kernel=encoder_cfg.begin_kernel,
scale=encoder_cfg.scale,
)
hidden_cfg = dict(
num_attention_heads=encoder_cfg.num_attention_heads,
intermediate_size=encoder_cfg.intermediate_size,
intermediate_activation=tf_utils.get_activation(
encoder_cfg.hidden_activation),
dropout_rate=encoder_cfg.dropout_rate,
attention_dropout_rate=encoder_cfg.attention_dropout_rate,
norm_first=encoder_cfg.norm_first,
kernel_initializer=tf_keras.initializers.TruncatedNormal(
stddev=encoder_cfg.initializer_range),
attention_cls=layers.KernelAttention,
attention_cfg=attention_cfg)
kwargs = dict(
embedding_cfg=embedding_cfg,
hidden_cls=layers.TransformerScaffold,
hidden_cfg=hidden_cfg,
num_hidden_instances=encoder_cfg.num_layers,
mask_cls=layers.KernelMask,
pooled_output_dim=encoder_cfg.hidden_size,
pooler_layer_initializer=tf_keras.initializers.TruncatedNormal(
stddev=encoder_cfg.initializer_range),
return_all_layer_outputs=False,
dict_outputs=True,
layer_idx_as_attention_seed=True)
return networks.EncoderScaffold(**kwargs)
if encoder_type == "xlnet":
return networks.XLNetBase(
vocab_size=encoder_cfg.vocab_size,
num_layers=encoder_cfg.num_layers,
hidden_size=encoder_cfg.hidden_size,
num_attention_heads=encoder_cfg.num_attention_heads,
head_size=encoder_cfg.head_size,
inner_size=encoder_cfg.inner_size,
dropout_rate=encoder_cfg.dropout_rate,
attention_dropout_rate=encoder_cfg.attention_dropout_rate,
attention_type=encoder_cfg.attention_type,
bi_data=encoder_cfg.bi_data,
two_stream=encoder_cfg.two_stream,
tie_attention_biases=encoder_cfg.tie_attention_biases,
memory_length=encoder_cfg.memory_length,
clamp_length=encoder_cfg.clamp_length,
reuse_length=encoder_cfg.reuse_length,
inner_activation=encoder_cfg.inner_activation,
use_cls_mask=encoder_cfg.use_cls_mask,
embedding_width=encoder_cfg.embedding_width,
initializer=tf_keras.initializers.RandomNormal(
stddev=encoder_cfg.initializer_range))
if encoder_type == "reuse":
embedding_cfg = dict(
vocab_size=encoder_cfg.vocab_size,
type_vocab_size=encoder_cfg.type_vocab_size,
hidden_size=encoder_cfg.hidden_size,
max_seq_length=encoder_cfg.max_position_embeddings,
initializer=tf_keras.initializers.TruncatedNormal(
stddev=encoder_cfg.initializer_range),
dropout_rate=encoder_cfg.dropout_rate)
hidden_cfg = dict(
num_attention_heads=encoder_cfg.num_attention_heads,
inner_dim=encoder_cfg.intermediate_size,
inner_activation=tf_utils.get_activation(
encoder_cfg.hidden_activation),
output_dropout=encoder_cfg.dropout_rate,
attention_dropout=encoder_cfg.attention_dropout_rate,
norm_first=encoder_cfg.norm_first,
kernel_initializer=tf_keras.initializers.TruncatedNormal(
stddev=encoder_cfg.initializer_range),
reuse_attention=encoder_cfg.reuse_attention,
use_relative_pe=encoder_cfg.use_relative_pe,
pe_max_seq_length=encoder_cfg.pe_max_seq_length,
max_reuse_layer_idx=encoder_cfg.max_reuse_layer_idx)
kwargs = dict(
embedding_cfg=embedding_cfg,
hidden_cls=layers.ReuseTransformer,
hidden_cfg=hidden_cfg,
num_hidden_instances=encoder_cfg.num_layers,
pooled_output_dim=encoder_cfg.hidden_size,
pooler_layer_initializer=tf_keras.initializers.TruncatedNormal(
stddev=encoder_cfg.initializer_range),
return_all_layer_outputs=False,
dict_outputs=True,
feed_layer_idx=True,
recursive=True)
return networks.EncoderScaffold(**kwargs)
if encoder_type == "query_bert":
embedding_layer = layers.FactorizedEmbedding(
vocab_size=encoder_cfg.vocab_size,
embedding_width=encoder_cfg.embedding_size,
output_dim=encoder_cfg.hidden_size,
initializer=tf_keras.initializers.TruncatedNormal(
stddev=encoder_cfg.initializer_range),
name="word_embeddings")
return networks.BertEncoderV2(
vocab_size=encoder_cfg.vocab_size,
hidden_size=encoder_cfg.hidden_size,
num_layers=encoder_cfg.num_layers,
num_attention_heads=encoder_cfg.num_attention_heads,
intermediate_size=encoder_cfg.intermediate_size,
activation=tf_utils.get_activation(encoder_cfg.hidden_activation),
dropout_rate=encoder_cfg.dropout_rate,
attention_dropout_rate=encoder_cfg.attention_dropout_rate,
max_sequence_length=encoder_cfg.max_position_embeddings,
type_vocab_size=encoder_cfg.type_vocab_size,
initializer=tf_keras.initializers.TruncatedNormal(
stddev=encoder_cfg.initializer_range),
output_range=encoder_cfg.output_range,
embedding_layer=embedding_layer,
return_all_encoder_outputs=encoder_cfg.return_all_encoder_outputs,
return_attention_scores=encoder_cfg.return_attention_scores,
dict_outputs=True,
norm_first=encoder_cfg.norm_first)
if encoder_type == "fnet":
return networks.FNet(
vocab_size=encoder_cfg.vocab_size,
hidden_size=encoder_cfg.hidden_size,
num_layers=encoder_cfg.num_layers,
num_attention_heads=encoder_cfg.num_attention_heads,
inner_dim=encoder_cfg.inner_dim,
inner_activation=tf_utils.get_activation(encoder_cfg.inner_activation),
output_dropout=encoder_cfg.output_dropout,
attention_dropout=encoder_cfg.attention_dropout,
max_sequence_length=encoder_cfg.max_sequence_length,
type_vocab_size=encoder_cfg.type_vocab_size,
initializer=tf_keras.initializers.TruncatedNormal(
stddev=encoder_cfg.initializer_range),
output_range=encoder_cfg.output_range,
embedding_width=encoder_cfg.embedding_width,
embedding_layer=embedding_layer,
norm_first=encoder_cfg.norm_first,
use_fft=encoder_cfg.use_fft,
attention_layers=encoder_cfg.attention_layers)
if encoder_type == "sparse_mixer":
return networks.SparseMixer(
vocab_size=encoder_cfg.vocab_size,
hidden_size=encoder_cfg.hidden_size,
num_layers=encoder_cfg.num_layers,
moe_layers=encoder_cfg.moe_layers,
attention_layers=encoder_cfg.attention_layers,
num_experts=encoder_cfg.num_experts,
train_capacity_factor=encoder_cfg.train_capacity_factor,
eval_capacity_factor=encoder_cfg.eval_capacity_factor,
examples_per_group=encoder_cfg.examples_per_group,
use_fft=encoder_cfg.use_fft,
num_attention_heads=encoder_cfg.num_attention_heads,
max_sequence_length=encoder_cfg.max_sequence_length,
type_vocab_size=encoder_cfg.type_vocab_size,
inner_dim=encoder_cfg.inner_dim,
inner_activation=tf_utils.get_activation(encoder_cfg.inner_activation),
output_dropout=encoder_cfg.output_dropout,
attention_dropout=encoder_cfg.attention_dropout,
initializer=tf_keras.initializers.TruncatedNormal(
stddev=encoder_cfg.initializer_range),
output_range=encoder_cfg.output_range,
embedding_width=encoder_cfg.embedding_width,
norm_first=encoder_cfg.norm_first,
embedding_layer=embedding_layer)
bert_encoder_cls = networks.BertEncoder
if encoder_type == "bert_v2":
bert_encoder_cls = networks.BertEncoderV2
# Uses the default BERTEncoder configuration schema to create the encoder.
# If it does not match, please add a switch branch by the encoder type.
return bert_encoder_cls(
vocab_size=encoder_cfg.vocab_size,
hidden_size=encoder_cfg.hidden_size,
num_layers=encoder_cfg.num_layers,
num_attention_heads=encoder_cfg.num_attention_heads,
intermediate_size=encoder_cfg.intermediate_size,
activation=tf_utils.get_activation(encoder_cfg.hidden_activation),
dropout_rate=encoder_cfg.dropout_rate,
attention_dropout_rate=encoder_cfg.attention_dropout_rate,
max_sequence_length=encoder_cfg.max_position_embeddings,
type_vocab_size=encoder_cfg.type_vocab_size,
initializer=tf_keras.initializers.TruncatedNormal(
stddev=encoder_cfg.initializer_range),
output_range=encoder_cfg.output_range,
embedding_width=encoder_cfg.embedding_size,
embedding_layer=embedding_layer,
return_all_encoder_outputs=encoder_cfg.return_all_encoder_outputs,
return_attention_scores=encoder_cfg.return_attention_scores,
dict_outputs=True,
norm_first=encoder_cfg.norm_first)
|