Spaces:
Runtime error
Runtime error
File size: 16,771 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The helper for finetuning binaries."""
import json
import math
import sys
from typing import Any, Dict, List, Optional
from absl import logging
import tensorflow as tf, tf_keras
from official.core import config_definitions as cfg
from official.modeling import hyperparams
from official.nlp.configs import encoders
from official.nlp.data import question_answering_dataloader
from official.nlp.data import sentence_prediction_dataloader
from official.nlp.data import tagging_dataloader
from official.nlp.tasks import question_answering
from official.nlp.tasks import sentence_prediction
from official.nlp.tasks import tagging
def override_trainer_cfg(trainer_cfg: cfg.TrainerConfig, learning_rate: float,
num_epoch: int, global_batch_size: int,
warmup_ratio: float, training_data_size: int,
eval_data_size: int, num_eval_per_epoch: int,
best_checkpoint_export_subdir: str,
best_checkpoint_eval_metric: str,
best_checkpoint_metric_comp: str):
"""Overrides a `cfg.TrainerConfig` object."""
steps_per_epoch = training_data_size // global_batch_size
train_steps = steps_per_epoch * num_epoch
# TODO(b/165081095): always set to -1 after the bug is resolved.
if eval_data_size:
eval_steps = int(math.ceil(eval_data_size / global_batch_size))
else:
eval_steps = -1 # exhaust the validation data.
warmp_steps = int(train_steps * warmup_ratio)
validation_interval = steps_per_epoch // num_eval_per_epoch
trainer_cfg.override({
'optimizer_config': {
'learning_rate': {
'type': 'polynomial',
'polynomial': {
'decay_steps': train_steps,
'initial_learning_rate': learning_rate,
'end_learning_rate': 0,
}
},
'optimizer': {
'type': 'adamw',
},
'warmup': {
'polynomial': {
'warmup_steps': warmp_steps,
},
'type': 'polynomial',
},
},
'train_steps': train_steps,
'validation_interval': validation_interval,
'validation_steps': eval_steps,
'best_checkpoint_export_subdir': best_checkpoint_export_subdir,
'best_checkpoint_eval_metric': best_checkpoint_eval_metric,
'best_checkpoint_metric_comp': best_checkpoint_metric_comp,
})
def load_model_config_file(model_config_file: str) -> Dict[str, Any]:
"""Loads bert config json file or `encoders.EncoderConfig` in yaml file."""
if not model_config_file:
# model_config_file may be empty when using tf.hub.
return {}
try:
encoder_config = encoders.EncoderConfig()
encoder_config = hyperparams.override_params_dict(
encoder_config, model_config_file, is_strict=True)
logging.info('Load encoder_config yaml file from %s.', model_config_file)
return encoder_config.as_dict()
except KeyError:
pass
logging.info('Load bert config json file from %s', model_config_file)
with tf.io.gfile.GFile(model_config_file, 'r') as reader:
text = reader.read()
config = json.loads(text)
def get_value(key1, key2):
if key1 in config and key2 in config:
raise ValueError('Unexpected that both %s and %s are in config.' %
(key1, key2))
return config[key1] if key1 in config else config[key2]
def get_value_or_none(key):
return config[key] if key in config else None
# Support both legacy bert_config attributes and the new config attributes.
return {
'bert': {
'attention_dropout_rate':
get_value('attention_dropout_rate',
'attention_probs_dropout_prob'),
'dropout_rate':
get_value('dropout_rate', 'hidden_dropout_prob'),
'hidden_activation':
get_value('hidden_activation', 'hidden_act'),
'hidden_size':
config['hidden_size'],
'embedding_size':
get_value_or_none('embedding_size'),
'initializer_range':
config['initializer_range'],
'intermediate_size':
config['intermediate_size'],
'max_position_embeddings':
config['max_position_embeddings'],
'num_attention_heads':
config['num_attention_heads'],
'num_layers':
get_value('num_layers', 'num_hidden_layers'),
'type_vocab_size':
config['type_vocab_size'],
'vocab_size':
config['vocab_size'],
}
}
def override_sentence_prediction_task_config(
task_cfg: sentence_prediction.SentencePredictionConfig,
model_config_file: str,
init_checkpoint: str,
hub_module_url: str,
global_batch_size: int,
train_input_path: str,
validation_input_path: str,
seq_length: int,
num_classes: int,
metric_type: Optional[str] = 'accuracy',
label_type: Optional[str] = 'int'):
"""Overrides a `SentencePredictionConfig` object."""
task_cfg.override({
'init_checkpoint': init_checkpoint,
'metric_type': metric_type,
'model': {
'num_classes': num_classes,
'encoder': load_model_config_file(model_config_file),
},
'hub_module_url': hub_module_url,
'train_data': {
'drop_remainder': True,
'global_batch_size': global_batch_size,
'input_path': train_input_path,
'is_training': True,
'seq_length': seq_length,
'label_type': label_type,
},
'validation_data': {
'drop_remainder': False,
'global_batch_size': global_batch_size,
'input_path': validation_input_path,
'is_training': False,
'seq_length': seq_length,
'label_type': label_type,
}
})
def override_qa_task_config(
task_cfg: question_answering.QuestionAnsweringConfig,
model_config_file: str, init_checkpoint: str, hub_module_url: str,
global_batch_size: int, train_input_path: str, validation_input_path: str,
seq_length: int, tokenization: str, vocab_file: str, do_lower_case: bool,
version_2_with_negative: bool):
"""Overrides a `QuestionAnsweringConfig` object."""
task_cfg.override({
'init_checkpoint': init_checkpoint,
'model': {
'encoder': load_model_config_file(model_config_file),
},
'hub_module_url': hub_module_url,
'train_data': {
'drop_remainder': True,
'global_batch_size': global_batch_size,
'input_path': train_input_path,
'is_training': True,
'seq_length': seq_length,
},
'validation_data': {
'do_lower_case': do_lower_case,
'drop_remainder': False,
'global_batch_size': global_batch_size,
'input_path': validation_input_path,
'is_training': False,
'seq_length': seq_length,
'tokenization': tokenization,
'version_2_with_negative': version_2_with_negative,
'vocab_file': vocab_file,
}
})
def override_tagging_task_config(task_cfg: tagging.TaggingConfig,
model_config_file: str, init_checkpoint: str,
hub_module_url: str, global_batch_size: int,
train_input_path: str,
validation_input_path: str, seq_length: int,
class_names: List[str]):
"""Overrides a `TaggingConfig` object."""
task_cfg.override({
'init_checkpoint': init_checkpoint,
'model': {
'encoder': load_model_config_file(model_config_file),
},
'hub_module_url': hub_module_url,
'train_data': {
'drop_remainder': True,
'global_batch_size': global_batch_size,
'input_path': train_input_path,
'is_training': True,
'seq_length': seq_length,
},
'validation_data': {
'drop_remainder': False,
'global_batch_size': global_batch_size,
'input_path': validation_input_path,
'is_training': False,
'seq_length': seq_length,
},
'class_names': class_names,
})
def write_glue_classification(task,
model,
input_file,
output_file,
predict_batch_size,
seq_length,
class_names,
label_type='int',
min_float_value=None,
max_float_value=None):
"""Makes classification predictions for glue and writes to output file.
Args:
task: `Task` instance.
model: `keras.Model` instance.
input_file: Input test data file path.
output_file: Output test data file path.
predict_batch_size: Batch size for prediction.
seq_length: Input sequence length.
class_names: List of string class names.
label_type: String denoting label type ('int', 'float'), defaults to 'int'.
min_float_value: If set, predictions will be min-clipped to this value (only
for regression when `label_type` is set to 'float'). Defaults to `None`
(no clipping).
max_float_value: If set, predictions will be max-clipped to this value (only
for regression when `label_type` is set to 'float'). Defaults to `None`
(no clipping).
"""
if label_type not in ('int', 'float'):
raise ValueError('Unsupported `label_type`. Given: %s, expected `int` or '
'`float`.' % label_type)
data_config = sentence_prediction_dataloader.SentencePredictionDataConfig(
input_path=input_file,
global_batch_size=predict_batch_size,
is_training=False,
seq_length=seq_length,
label_type=label_type,
drop_remainder=False,
include_example_id=True)
predictions = sentence_prediction.predict(task, data_config, model)
if label_type == 'float':
min_float_value = (-sys.float_info.max
if min_float_value is None else min_float_value)
max_float_value = (
sys.float_info.max if max_float_value is None else max_float_value)
# Clip predictions to range [min_float_value, max_float_value].
predictions = [
min(max(prediction, min_float_value), max_float_value)
for prediction in predictions
]
with tf.io.gfile.GFile(output_file, 'w') as writer:
writer.write('index\tprediction\n')
for index, prediction in enumerate(predictions):
if label_type == 'float':
# Regression.
writer.write('%d\t%.3f\n' % (index, prediction))
else:
# Classification.
writer.write('%d\t%s\n' % (index, class_names[prediction]))
def write_superglue_classification(task,
model,
input_file,
output_file,
predict_batch_size,
seq_length,
class_names,
label_type='int'):
"""Makes classification predictions for superglue and writes to output file.
Args:
task: `Task` instance.
model: `keras.Model` instance.
input_file: Input test data file path.
output_file: Output test data file path.
predict_batch_size: Batch size for prediction.
seq_length: Input sequence length.
class_names: List of string class names.
label_type: String denoting label type ('int', 'float'), defaults to 'int'.
"""
if label_type not in 'int':
raise ValueError('Unsupported `label_type`. Given: %s, expected `int` or '
'`float`.' % label_type)
data_config = sentence_prediction_dataloader.SentencePredictionDataConfig(
input_path=input_file,
global_batch_size=predict_batch_size,
is_training=False,
seq_length=seq_length,
label_type=label_type,
drop_remainder=False,
include_example_id=True)
predictions = sentence_prediction.predict(task, data_config, model)
with tf.io.gfile.GFile(output_file, 'w') as writer:
for index, prediction in enumerate(predictions):
if label_type == 'int':
# Classification.
writer.write('{"idx": %d, "label": %s}\n' %
(index, class_names[prediction]))
def write_xtreme_classification(task,
model,
input_file,
output_file,
predict_batch_size,
seq_length,
class_names,
translated_input_file=None,
test_time_aug_wgt=0.3):
"""Makes classification predictions for xtreme and writes to output file."""
data_config = sentence_prediction_dataloader.SentencePredictionDataConfig(
input_path=input_file,
seq_length=seq_length,
is_training=False,
label_type='int',
global_batch_size=predict_batch_size,
drop_remainder=False,
include_example_id=True)
if translated_input_file is not None:
data_config_aug = (
sentence_prediction_dataloader.SentencePredictionDataConfig(
input_path=translated_input_file,
seq_length=seq_length,
is_training=False,
label_type='int',
global_batch_size=predict_batch_size,
drop_remainder=False,
include_example_id=True))
else:
data_config_aug = None
predictions = sentence_prediction.predict(task, data_config, model,
data_config_aug, test_time_aug_wgt)
with tf.io.gfile.GFile(output_file, 'w') as writer:
for prediction in predictions:
writer.write('%s\n' % class_names[prediction])
def write_question_answering(task,
model,
input_file,
output_file,
predict_batch_size,
seq_length,
tokenization,
vocab_file,
do_lower_case,
version_2_with_negative=False):
"""Makes question answering predictions and writes to output file."""
data_config = question_answering_dataloader.QADataConfig(
do_lower_case=do_lower_case,
doc_stride=128,
drop_remainder=False,
global_batch_size=predict_batch_size,
input_path=input_file,
is_training=False,
query_length=64,
seq_length=seq_length,
tokenization=tokenization,
version_2_with_negative=version_2_with_negative,
vocab_file=vocab_file)
all_predictions, _, _ = question_answering.predict(task, data_config, model)
with tf.io.gfile.GFile(output_file, 'w') as writer:
writer.write(json.dumps(all_predictions, indent=4) + '\n')
def write_tagging(task, model, input_file, output_file, predict_batch_size,
seq_length):
"""Makes tagging predictions and writes to output file."""
data_config = tagging_dataloader.TaggingDataConfig(
input_path=input_file,
is_training=False,
seq_length=seq_length,
global_batch_size=predict_batch_size,
drop_remainder=False,
include_sentence_id=True)
results = tagging.predict(task, data_config, model)
class_names = task.task_config.class_names
last_sentence_id = -1
with tf.io.gfile.GFile(output_file, 'w') as writer:
for sentence_id, _, predict_ids in results:
token_labels = [class_names[x] for x in predict_ids]
assert sentence_id == last_sentence_id or (
sentence_id == last_sentence_id + 1)
if sentence_id != last_sentence_id and last_sentence_id != -1:
writer.write('\n')
writer.write('\n'.join(token_labels))
writer.write('\n')
last_sentence_id = sentence_id
|