File size: 9,691 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Keras-based gated feedforward layer."""
# pylint: disable=g-classes-have-attributes

import gin
import tensorflow as tf, tf_keras

from official.modeling import tf_utils
from official.nlp.modeling.layers import util


@tf_keras.utils.register_keras_serializable(package="Text")
@gin.configurable
class GatedFeedforward(tf_keras.layers.Layer):
  """Gated linear feedforward layer.

  This layer follows the paper "GLU Variants Improve Transformer"
  (https://arxiv.org/abs/2002.05202). In additional, it allows to stack
  multiple feedforward blocks and specify the position of dropout layer.

  Args:
    intermediate_size: Size of the intermediate layer.
    intermediate_activation: Activation for the intermediate layer.
    dropout: Dropout probability for the output dropout.
    use_gate: Whether to use gated linear units. If True, assuming `GELU` as the
      activation and omitting bias, will apply
      `GEGLU(x, W, V, W_2) = (GEGLU(xW) * xV)W2`; if False, will follow
      "Attention Is All You Need" (https://arxiv.org/abs/1706.03762) paper and
        apply `FFN(x, W, W_2) = GELU(xW_1)W_2.`
    num_blocks: The number of feedforward blocks to stack. Each block contains a
      (gated) linear layer and a fully connected layer followed by dropout,
      layer norm and residual.
    dropout_position: Where to apply the dropout, the value can be either
      `before_residual` or `after_residual`. If `before_residual`, will apply
      `layer_output = layer_norm(dropout(layer_output) + layer_input)`; if
      `after residual`, will apply
      `layer_output = dropout(layer_norm(layer_output + layer_input))`.
    kernel_initializer: Initializer for dense layer kernels.
    bias_initializer: Initializer for dense layer biases.
    kernel_regularizer: Regularizer for dense layer kernels.
    bias_regularizer: Regularizer for dense layer biases.
    activity_regularizer: Regularizer for dense layer activity.
    kernel_constraint: Constraint for dense layer kernels.
    bias_constraint: Constraint for dense layer kernels.
  """

  def __init__(self,
               inner_dim=768,
               inner_activation=tf_utils.get_activation("gelu"),
               dropout=0.0,
               use_gate=True,
               apply_output_layer_norm=True,
               num_blocks=1,
               dropout_position="before_residual",
               kernel_initializer="glorot_uniform",
               bias_initializer="zeros",
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
               **kwargs):
    inner_dim = kwargs.pop("intermediate_size", inner_dim)
    inner_activation = kwargs.pop("intermediate_activation", inner_activation)
    util.filter_kwargs(kwargs)
    super().__init__(**kwargs)
    self._inner_dim = inner_dim
    self._inner_activation = inner_activation
    self._dropout = dropout
    self._use_gate = use_gate
    self._num_blocks = num_blocks
    self._apply_output_layer_norm = apply_output_layer_norm
    self._dropout_position = dropout_position
    if self._dropout_position not in ("before_residual", "after_residual"):
      raise ValueError(
          "The dropout_position should be either `before_residual` or"
          "`after_residual`, got: %s" % self._dropout_position)

    self._kernel_initializer = tf_keras.initializers.get(kernel_initializer)
    self._bias_initializer = tf_keras.initializers.get(bias_initializer)
    self._kernel_regularizer = tf_keras.regularizers.get(kernel_regularizer)
    self._bias_regularizer = tf_keras.regularizers.get(bias_regularizer)
    self._activity_regularizer = tf_keras.regularizers.get(activity_regularizer)
    self._kernel_constraint = tf_keras.constraints.get(kernel_constraint)
    self._bias_constraint = tf_keras.constraints.get(bias_constraint)

  def build(self, input_shape):
    hidden_size = input_shape.as_list()[-1]

    common_kwargs = dict(
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activity_regularizer=self._activity_regularizer,
        kernel_constraint=self._kernel_constraint,
        bias_constraint=self._bias_constraint)
    self._intermediate_dense = []
    self._inner_activation_layers = []
    self._gate_dense = []
    self._output_dense = []
    self._output_dropout = []
    self._output_layer_norm = []
    activation_policy = tf_keras.mixed_precision.global_policy()
    if activation_policy.name == "mixed_bfloat16":
      # bfloat16 causes BERT with the LAMB optimizer to not converge
      # as well, so we use float32.
      # TODO(b/154538392): Investigate this.
      activation_policy = tf.float32
    for i in range(self._num_blocks):
      self._intermediate_dense.append(
          tf_keras.layers.EinsumDense(
              "abc,cd->abd",
              output_shape=(None, self._inner_dim),
              bias_axes="d",
              name="intermediate_%d" % i,
              kernel_initializer=tf_utils.clone_initializer(
                  self._kernel_initializer),
              bias_initializer=tf_utils.clone_initializer(
                  self._bias_initializer),
              **common_kwargs))
      self._inner_activation_layers.append(
          tf_keras.layers.Activation(
              self._inner_activation, dtype=activation_policy))
      if self._use_gate:
        self._gate_dense.append(
            tf_keras.layers.EinsumDense(
                "abc,cd->abd",
                output_shape=(None, self._inner_dim),
                bias_axes="d",
                name="gate_%d" % i,
                kernel_initializer=tf_utils.clone_initializer(
                    self._kernel_initializer),
                bias_initializer=tf_utils.clone_initializer(
                    self._bias_initializer),
                **common_kwargs))
      self._output_dense.append(
          tf_keras.layers.EinsumDense(
              "abc,cd->abd",
              output_shape=(None, hidden_size),
              bias_axes="d",
              name="output_%d" % i,
              kernel_initializer=tf_utils.clone_initializer(
                  self._kernel_initializer),
              bias_initializer=tf_utils.clone_initializer(
                  self._bias_initializer),
              **common_kwargs))
      self._output_dropout.append(tf_keras.layers.Dropout(rate=self._dropout))
      # Use float32 in layernorm for numeric stability.
      if self._apply_output_layer_norm:
        self._output_layer_norm.append(
            tf_keras.layers.LayerNormalization(
                name="output_layer_norm_%d" % i,
                axis=-1,
                epsilon=1e-12,
                dtype=tf.float32))

  def get_config(self):
    config = {
        "inner_dim":
            self._inner_dim,
        "inner_activation":
            self._inner_activation,
        "dropout":
            self._dropout,
        "use_gate":
            self._use_gate,
        "num_blocks":
            self._num_blocks,
        "dropout_position":
            self._dropout_position,
        "kernel_initializer":
            tf_keras.initializers.serialize(self._kernel_initializer),
        "bias_initializer":
            tf_keras.initializers.serialize(self._bias_initializer),
        "kernel_regularizer":
            tf_keras.regularizers.serialize(self._kernel_regularizer),
        "bias_regularizer":
            tf_keras.regularizers.serialize(self._bias_regularizer),
        "activity_regularizer":
            tf_keras.regularizers.serialize(self._activity_regularizer),
        "kernel_constraint":
            tf_keras.constraints.serialize(self._kernel_constraint),
        "bias_constraint":
            tf_keras.constraints.serialize(self._bias_constraint)
    }
    base_config = super().get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def call(self, inputs):
    layer_output = inputs
    for i in range(self._num_blocks):
      layer_input = layer_output
      intermediate_output = self._intermediate_dense[i](layer_input)
      intermediate_output = self._inner_activation_layers[i](
          intermediate_output)
      if self._use_gate:
        gated_linear = self._gate_dense[i](layer_input)
        intermediate_output = intermediate_output * gated_linear

      layer_output = self._output_dense[i](intermediate_output)
      if self._dropout_position == "before_residual":
        layer_output = self._output_dropout[i](layer_output)

      # During mixed precision training, `layer_input` may be from layer norm.
      # If so, it is always fp32. Cast layer_output to fp32 for the subsequent
      # add.
      if layer_input.dtype == tf.float32:
        layer_output = tf.cast(layer_output, tf.float32)
      if self._apply_output_layer_norm:
        layer_output = self._output_layer_norm[i](layer_output + layer_input)
      if self._dropout_position == "after_residual":
        layer_output = self._output_dropout[i](layer_output)

    return layer_output