Spaces:
Runtime error
Runtime error
File size: 9,691 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Keras-based gated feedforward layer."""
# pylint: disable=g-classes-have-attributes
import gin
import tensorflow as tf, tf_keras
from official.modeling import tf_utils
from official.nlp.modeling.layers import util
@tf_keras.utils.register_keras_serializable(package="Text")
@gin.configurable
class GatedFeedforward(tf_keras.layers.Layer):
"""Gated linear feedforward layer.
This layer follows the paper "GLU Variants Improve Transformer"
(https://arxiv.org/abs/2002.05202). In additional, it allows to stack
multiple feedforward blocks and specify the position of dropout layer.
Args:
intermediate_size: Size of the intermediate layer.
intermediate_activation: Activation for the intermediate layer.
dropout: Dropout probability for the output dropout.
use_gate: Whether to use gated linear units. If True, assuming `GELU` as the
activation and omitting bias, will apply
`GEGLU(x, W, V, W_2) = (GEGLU(xW) * xV)W2`; if False, will follow
"Attention Is All You Need" (https://arxiv.org/abs/1706.03762) paper and
apply `FFN(x, W, W_2) = GELU(xW_1)W_2.`
num_blocks: The number of feedforward blocks to stack. Each block contains a
(gated) linear layer and a fully connected layer followed by dropout,
layer norm and residual.
dropout_position: Where to apply the dropout, the value can be either
`before_residual` or `after_residual`. If `before_residual`, will apply
`layer_output = layer_norm(dropout(layer_output) + layer_input)`; if
`after residual`, will apply
`layer_output = dropout(layer_norm(layer_output + layer_input))`.
kernel_initializer: Initializer for dense layer kernels.
bias_initializer: Initializer for dense layer biases.
kernel_regularizer: Regularizer for dense layer kernels.
bias_regularizer: Regularizer for dense layer biases.
activity_regularizer: Regularizer for dense layer activity.
kernel_constraint: Constraint for dense layer kernels.
bias_constraint: Constraint for dense layer kernels.
"""
def __init__(self,
inner_dim=768,
inner_activation=tf_utils.get_activation("gelu"),
dropout=0.0,
use_gate=True,
apply_output_layer_norm=True,
num_blocks=1,
dropout_position="before_residual",
kernel_initializer="glorot_uniform",
bias_initializer="zeros",
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs):
inner_dim = kwargs.pop("intermediate_size", inner_dim)
inner_activation = kwargs.pop("intermediate_activation", inner_activation)
util.filter_kwargs(kwargs)
super().__init__(**kwargs)
self._inner_dim = inner_dim
self._inner_activation = inner_activation
self._dropout = dropout
self._use_gate = use_gate
self._num_blocks = num_blocks
self._apply_output_layer_norm = apply_output_layer_norm
self._dropout_position = dropout_position
if self._dropout_position not in ("before_residual", "after_residual"):
raise ValueError(
"The dropout_position should be either `before_residual` or"
"`after_residual`, got: %s" % self._dropout_position)
self._kernel_initializer = tf_keras.initializers.get(kernel_initializer)
self._bias_initializer = tf_keras.initializers.get(bias_initializer)
self._kernel_regularizer = tf_keras.regularizers.get(kernel_regularizer)
self._bias_regularizer = tf_keras.regularizers.get(bias_regularizer)
self._activity_regularizer = tf_keras.regularizers.get(activity_regularizer)
self._kernel_constraint = tf_keras.constraints.get(kernel_constraint)
self._bias_constraint = tf_keras.constraints.get(bias_constraint)
def build(self, input_shape):
hidden_size = input_shape.as_list()[-1]
common_kwargs = dict(
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer,
activity_regularizer=self._activity_regularizer,
kernel_constraint=self._kernel_constraint,
bias_constraint=self._bias_constraint)
self._intermediate_dense = []
self._inner_activation_layers = []
self._gate_dense = []
self._output_dense = []
self._output_dropout = []
self._output_layer_norm = []
activation_policy = tf_keras.mixed_precision.global_policy()
if activation_policy.name == "mixed_bfloat16":
# bfloat16 causes BERT with the LAMB optimizer to not converge
# as well, so we use float32.
# TODO(b/154538392): Investigate this.
activation_policy = tf.float32
for i in range(self._num_blocks):
self._intermediate_dense.append(
tf_keras.layers.EinsumDense(
"abc,cd->abd",
output_shape=(None, self._inner_dim),
bias_axes="d",
name="intermediate_%d" % i,
kernel_initializer=tf_utils.clone_initializer(
self._kernel_initializer),
bias_initializer=tf_utils.clone_initializer(
self._bias_initializer),
**common_kwargs))
self._inner_activation_layers.append(
tf_keras.layers.Activation(
self._inner_activation, dtype=activation_policy))
if self._use_gate:
self._gate_dense.append(
tf_keras.layers.EinsumDense(
"abc,cd->abd",
output_shape=(None, self._inner_dim),
bias_axes="d",
name="gate_%d" % i,
kernel_initializer=tf_utils.clone_initializer(
self._kernel_initializer),
bias_initializer=tf_utils.clone_initializer(
self._bias_initializer),
**common_kwargs))
self._output_dense.append(
tf_keras.layers.EinsumDense(
"abc,cd->abd",
output_shape=(None, hidden_size),
bias_axes="d",
name="output_%d" % i,
kernel_initializer=tf_utils.clone_initializer(
self._kernel_initializer),
bias_initializer=tf_utils.clone_initializer(
self._bias_initializer),
**common_kwargs))
self._output_dropout.append(tf_keras.layers.Dropout(rate=self._dropout))
# Use float32 in layernorm for numeric stability.
if self._apply_output_layer_norm:
self._output_layer_norm.append(
tf_keras.layers.LayerNormalization(
name="output_layer_norm_%d" % i,
axis=-1,
epsilon=1e-12,
dtype=tf.float32))
def get_config(self):
config = {
"inner_dim":
self._inner_dim,
"inner_activation":
self._inner_activation,
"dropout":
self._dropout,
"use_gate":
self._use_gate,
"num_blocks":
self._num_blocks,
"dropout_position":
self._dropout_position,
"kernel_initializer":
tf_keras.initializers.serialize(self._kernel_initializer),
"bias_initializer":
tf_keras.initializers.serialize(self._bias_initializer),
"kernel_regularizer":
tf_keras.regularizers.serialize(self._kernel_regularizer),
"bias_regularizer":
tf_keras.regularizers.serialize(self._bias_regularizer),
"activity_regularizer":
tf_keras.regularizers.serialize(self._activity_regularizer),
"kernel_constraint":
tf_keras.constraints.serialize(self._kernel_constraint),
"bias_constraint":
tf_keras.constraints.serialize(self._bias_constraint)
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
def call(self, inputs):
layer_output = inputs
for i in range(self._num_blocks):
layer_input = layer_output
intermediate_output = self._intermediate_dense[i](layer_input)
intermediate_output = self._inner_activation_layers[i](
intermediate_output)
if self._use_gate:
gated_linear = self._gate_dense[i](layer_input)
intermediate_output = intermediate_output * gated_linear
layer_output = self._output_dense[i](intermediate_output)
if self._dropout_position == "before_residual":
layer_output = self._output_dropout[i](layer_output)
# During mixed precision training, `layer_input` may be from layer norm.
# If so, it is always fp32. Cast layer_output to fp32 for the subsequent
# add.
if layer_input.dtype == tf.float32:
layer_output = tf.cast(layer_output, tf.float32)
if self._apply_output_layer_norm:
layer_output = self._output_layer_norm[i](layer_output + layer_input)
if self._dropout_position == "after_residual":
layer_output = self._output_dropout[i](layer_output)
return layer_output
|