Spaces:
Runtime error
Runtime error
File size: 8,887 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""ALBERT (https://arxiv.org/abs/1810.04805) text encoder network."""
# pylint: disable=g-classes-have-attributes
import collections
import tensorflow as tf, tf_keras
from official.modeling import activations
from official.modeling import tf_utils
from official.nlp.modeling import layers
@tf_keras.utils.register_keras_serializable(package='Text')
class AlbertEncoder(tf_keras.Model):
"""ALBERT (https://arxiv.org/abs/1810.04805) text encoder network.
This network implements the encoder described in the paper "ALBERT: A Lite
BERT for Self-supervised Learning of Language Representations"
(https://arxiv.org/abs/1909.11942).
Compared with BERT (https://arxiv.org/abs/1810.04805), ALBERT refactorizes
embedding parameters into two smaller matrices and shares parameters
across layers.
The default values for this object are taken from the ALBERT-Base
implementation described in the paper.
*Note* that the network is constructed by Keras Functional API.
Args:
vocab_size: The size of the token vocabulary.
embedding_width: The width of the word embeddings. If the embedding width is
not equal to hidden size, embedding parameters will be factorized into two
matrices in the shape of `(vocab_size, embedding_width)` and
`(embedding_width, hidden_size)`, where `embedding_width` is usually much
smaller than `hidden_size`.
hidden_size: The size of the transformer hidden layers.
num_layers: The number of transformer layers.
num_attention_heads: The number of attention heads for each transformer. The
hidden size must be divisible by the number of attention heads.
max_sequence_length: The maximum sequence length that this encoder can
consume. If None, max_sequence_length uses the value from sequence length.
This determines the variable shape for positional embeddings.
type_vocab_size: The number of types that the 'type_ids' input can take.
intermediate_size: The intermediate size for the transformer layers.
activation: The activation to use for the transformer layers.
dropout_rate: The dropout rate to use for the transformer layers.
attention_dropout_rate: The dropout rate to use for the attention layers
within the transformer layers.
initializer: The initialzer to use for all weights in this encoder.
dict_outputs: Whether to use a dictionary as the model outputs.
"""
def __init__(self,
vocab_size,
embedding_width=128,
hidden_size=768,
num_layers=12,
num_attention_heads=12,
max_sequence_length=512,
type_vocab_size=16,
intermediate_size=3072,
activation=activations.gelu,
dropout_rate=0.1,
attention_dropout_rate=0.1,
initializer=tf_keras.initializers.TruncatedNormal(stddev=0.02),
dict_outputs=False,
**kwargs):
activation = tf_keras.activations.get(activation)
initializer = tf_keras.initializers.get(initializer)
word_ids = tf_keras.layers.Input(
shape=(None,), dtype=tf.int32, name='input_word_ids')
mask = tf_keras.layers.Input(
shape=(None,), dtype=tf.int32, name='input_mask')
type_ids = tf_keras.layers.Input(
shape=(None,), dtype=tf.int32, name='input_type_ids')
if embedding_width is None:
embedding_width = hidden_size
embedding_layer = layers.OnDeviceEmbedding(
vocab_size=vocab_size,
embedding_width=embedding_width,
initializer=tf_utils.clone_initializer(initializer),
name='word_embeddings')
word_embeddings = embedding_layer(word_ids)
# Always uses dynamic slicing for simplicity.
position_embedding_layer = layers.PositionEmbedding(
initializer=tf_utils.clone_initializer(initializer),
max_length=max_sequence_length,
name='position_embedding')
position_embeddings = position_embedding_layer(word_embeddings)
type_embeddings = (
layers.OnDeviceEmbedding(
vocab_size=type_vocab_size,
embedding_width=embedding_width,
initializer=tf_utils.clone_initializer(initializer),
use_one_hot=True,
name='type_embeddings')(type_ids))
embeddings = tf_keras.layers.Add()(
[word_embeddings, position_embeddings, type_embeddings])
embeddings = (
tf_keras.layers.LayerNormalization(
name='embeddings/layer_norm',
axis=-1,
epsilon=1e-12,
dtype=tf.float32)(embeddings))
embeddings = (tf_keras.layers.Dropout(rate=dropout_rate)(embeddings))
# We project the 'embedding' output to 'hidden_size' if it is not already
# 'hidden_size'.
if embedding_width != hidden_size:
embeddings = tf_keras.layers.EinsumDense(
'...x,xy->...y',
output_shape=hidden_size,
bias_axes='y',
kernel_initializer=tf_utils.clone_initializer(initializer),
name='embedding_projection')(
embeddings)
data = embeddings
attention_mask = layers.SelfAttentionMask()(data, mask)
shared_layer = layers.TransformerEncoderBlock(
num_attention_heads=num_attention_heads,
inner_dim=intermediate_size,
inner_activation=activation,
output_dropout=dropout_rate,
attention_dropout=attention_dropout_rate,
kernel_initializer=tf_utils.clone_initializer(initializer),
name='transformer')
encoder_outputs = []
for _ in range(num_layers):
data = shared_layer([data, attention_mask])
encoder_outputs.append(data)
# Applying a tf.slice op (through subscript notation) to a Keras tensor
# like this will create a SliceOpLambda layer. This is better than a Lambda
# layer with Python code, because that is fundamentally less portable.
first_token_tensor = data[:, 0, :]
cls_output = tf_keras.layers.Dense(
units=hidden_size,
activation='tanh',
kernel_initializer=tf_utils.clone_initializer(initializer),
name='pooler_transform')(
first_token_tensor)
if dict_outputs:
outputs = dict(
sequence_output=data,
encoder_outputs=encoder_outputs,
pooled_output=cls_output,
)
else:
outputs = [data, cls_output]
# b/164516224
# Once we've created the network using the Functional API, we call
# super().__init__ as though we were invoking the Functional API Model
# constructor, resulting in this object having all the properties of a model
# created using the Functional API. Once super().__init__ is called, we
# can assign attributes to `self` - note that all `self` assignments are
# below this line.
super().__init__(
inputs=[word_ids, mask, type_ids], outputs=outputs, **kwargs)
config_dict = {
'vocab_size': vocab_size,
'embedding_width': embedding_width,
'hidden_size': hidden_size,
'num_layers': num_layers,
'num_attention_heads': num_attention_heads,
'max_sequence_length': max_sequence_length,
'type_vocab_size': type_vocab_size,
'intermediate_size': intermediate_size,
'activation': tf_keras.activations.serialize(activation),
'dropout_rate': dropout_rate,
'attention_dropout_rate': attention_dropout_rate,
'initializer': tf_keras.initializers.serialize(initializer),
}
# We are storing the config dict as a namedtuple here to ensure checkpoint
# compatibility with an earlier version of this model which did not track
# the config dict attribute. TF does not track immutable attrs which
# do not contain Trackables, so by creating a config namedtuple instead of
# a dict we avoid tracking it.
config_cls = collections.namedtuple('Config', config_dict.keys())
self._config = config_cls(**config_dict)
self._embedding_layer = embedding_layer
self._position_embedding_layer = position_embedding_layer
def get_embedding_table(self):
return self._embedding_layer.embeddings
def get_config(self):
return dict(self._config._asdict())
@classmethod
def from_config(cls, config):
return cls(**config)
|