File size: 6,225 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""A binary/library to export TF-NLP serving `SavedModel`."""
import dataclasses
import os
from typing import Any, Dict, Text

from absl import app
from absl import flags
import yaml

from official.core import base_task
from official.core import task_factory
from official.modeling import hyperparams
from official.modeling.hyperparams import base_config
from official.nlp.serving import export_savedmodel_util
from official.nlp.serving import serving_modules
from official.nlp.tasks import masked_lm
from official.nlp.tasks import question_answering
from official.nlp.tasks import sentence_prediction
from official.nlp.tasks import tagging
from official.nlp.tasks import translation

FLAGS = flags.FLAGS

SERVING_MODULES = {
    sentence_prediction.SentencePredictionTask:
        serving_modules.SentencePrediction,
    masked_lm.MaskedLMTask:
        serving_modules.MaskedLM,
    question_answering.QuestionAnsweringTask:
        serving_modules.QuestionAnswering,
    tagging.TaggingTask:
        serving_modules.Tagging,
    translation.TranslationTask:
        serving_modules.Translation
}


def define_flags():
  """Defines flags."""
  flags.DEFINE_string("task_name", "SentencePrediction", "The task to export.")
  flags.DEFINE_string("config_file", None,
                      "The path to task/experiment yaml config file.")
  flags.DEFINE_string(
      "checkpoint_path", None,
      "Object-based checkpoint path, from the training model directory.")
  flags.DEFINE_string("export_savedmodel_dir", None,
                      "Output saved model directory.")
  flags.DEFINE_string(
      "serving_params", None,
      "a YAML/JSON string or csv string for the serving parameters.")
  flags.DEFINE_string(
      "function_keys", None,
      "A string key to retrieve pre-defined serving signatures.")
  flags.DEFINE_string(
      "module_key", None,
      "For multi-task case, load the export module weights from a specific "
      "checkpoint item.")
  flags.DEFINE_bool("convert_tpu", False, "")
  flags.DEFINE_multi_integer("allowed_batch_size", None,
                             "Allowed batch sizes for batching ops.")
  flags.DEFINE_integer("num_batch_threads", 4,
                       "Number of threads to do TPU batching.")
  flags.DEFINE_integer("batch_timeout_micros", 100000,
                       "TPU batch function timeout in microseconds.")
  flags.DEFINE_integer("max_enqueued_batches", 1000,
                       "Max number of batches in queue for TPU batching.")


def lookup_export_module(task: base_task.Task):
  export_module_cls = SERVING_MODULES.get(task.__class__, None)
  if export_module_cls is None:
    ValueError("No registered export module for the task: %s", task.__class__)
  return export_module_cls


def create_export_module(*, task_name: Text, config_file: Text,
                         serving_params: Dict[Text, Any]):
  """Creates a ExportModule."""
  task_config_cls = None
  task_cls = None
  # pylint: disable=protected-access
  for key, value in task_factory._REGISTERED_TASK_CLS.items():
    print(key.__name__)
    if task_name in key.__name__:
      task_config_cls, task_cls = key, value
      break
  if task_cls is None:
    raise ValueError("Failed to identify the task class. The provided task "
                     f"name is {task_name}")
  # pylint: enable=protected-access
  # TODO(hongkuny): Figure out how to separate the task config from experiments.

  @dataclasses.dataclass
  class Dummy(base_config.Config):
    task: task_config_cls = dataclasses.field(default_factory=task_config_cls)

  dummy_exp = Dummy()
  dummy_exp = hyperparams.override_params_dict(
      dummy_exp, config_file, is_strict=False)
  dummy_exp.task.validation_data = None
  task = task_cls(dummy_exp.task)
  model = task.build_model()
  export_module_cls = lookup_export_module(task)
  params = export_module_cls.Params(**serving_params)
  return export_module_cls(params=params, model=model)


def main(_):
  serving_params = yaml.load(
      hyperparams.nested_csv_str_to_json_str(FLAGS.serving_params),
      Loader=yaml.FullLoader)
  export_module = create_export_module(
      task_name=FLAGS.task_name,
      config_file=FLAGS.config_file,
      serving_params=serving_params)
  export_dir = export_savedmodel_util.export(
      export_module,
      function_keys=[FLAGS.function_keys],
      checkpoint_path=FLAGS.checkpoint_path,
      export_savedmodel_dir=FLAGS.export_savedmodel_dir,
      module_key=FLAGS.module_key)

  if FLAGS.convert_tpu:
    # pylint: disable=g-import-not-at-top
    from cloud_tpu.inference_converter_v2 import converter_options_v2_pb2
    from cloud_tpu.inference_converter_v2.python import converter

    tpu_dir = os.path.join(export_dir, "tpu")
    batch_options = []
    if FLAGS.allowed_batch_size is not None:
      allowed_batch_sizes = sorted(FLAGS.allowed_batch_size)
      batch_option = converter_options_v2_pb2.BatchOptionsV2(
          num_batch_threads=FLAGS.num_batch_threads,
          max_batch_size=allowed_batch_sizes[-1],
          batch_timeout_micros=FLAGS.batch_timeout_micros,
          allowed_batch_sizes=allowed_batch_sizes,
          max_enqueued_batches=FLAGS.max_enqueued_batches
      )
      batch_options.append(batch_option)

    converter_options = converter_options_v2_pb2.ConverterOptionsV2(
        tpu_functions=[
            converter_options_v2_pb2.TpuFunction(function_alias="tpu_candidate")
        ],
        batch_options=batch_options,
    )

    converter.ConvertSavedModel(export_dir, tpu_dir, converter_options)

if __name__ == "__main__":
  define_flags()
  app.run(main)