Spaces:
Runtime error
Runtime error
File size: 6,225 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A binary/library to export TF-NLP serving `SavedModel`."""
import dataclasses
import os
from typing import Any, Dict, Text
from absl import app
from absl import flags
import yaml
from official.core import base_task
from official.core import task_factory
from official.modeling import hyperparams
from official.modeling.hyperparams import base_config
from official.nlp.serving import export_savedmodel_util
from official.nlp.serving import serving_modules
from official.nlp.tasks import masked_lm
from official.nlp.tasks import question_answering
from official.nlp.tasks import sentence_prediction
from official.nlp.tasks import tagging
from official.nlp.tasks import translation
FLAGS = flags.FLAGS
SERVING_MODULES = {
sentence_prediction.SentencePredictionTask:
serving_modules.SentencePrediction,
masked_lm.MaskedLMTask:
serving_modules.MaskedLM,
question_answering.QuestionAnsweringTask:
serving_modules.QuestionAnswering,
tagging.TaggingTask:
serving_modules.Tagging,
translation.TranslationTask:
serving_modules.Translation
}
def define_flags():
"""Defines flags."""
flags.DEFINE_string("task_name", "SentencePrediction", "The task to export.")
flags.DEFINE_string("config_file", None,
"The path to task/experiment yaml config file.")
flags.DEFINE_string(
"checkpoint_path", None,
"Object-based checkpoint path, from the training model directory.")
flags.DEFINE_string("export_savedmodel_dir", None,
"Output saved model directory.")
flags.DEFINE_string(
"serving_params", None,
"a YAML/JSON string or csv string for the serving parameters.")
flags.DEFINE_string(
"function_keys", None,
"A string key to retrieve pre-defined serving signatures.")
flags.DEFINE_string(
"module_key", None,
"For multi-task case, load the export module weights from a specific "
"checkpoint item.")
flags.DEFINE_bool("convert_tpu", False, "")
flags.DEFINE_multi_integer("allowed_batch_size", None,
"Allowed batch sizes for batching ops.")
flags.DEFINE_integer("num_batch_threads", 4,
"Number of threads to do TPU batching.")
flags.DEFINE_integer("batch_timeout_micros", 100000,
"TPU batch function timeout in microseconds.")
flags.DEFINE_integer("max_enqueued_batches", 1000,
"Max number of batches in queue for TPU batching.")
def lookup_export_module(task: base_task.Task):
export_module_cls = SERVING_MODULES.get(task.__class__, None)
if export_module_cls is None:
ValueError("No registered export module for the task: %s", task.__class__)
return export_module_cls
def create_export_module(*, task_name: Text, config_file: Text,
serving_params: Dict[Text, Any]):
"""Creates a ExportModule."""
task_config_cls = None
task_cls = None
# pylint: disable=protected-access
for key, value in task_factory._REGISTERED_TASK_CLS.items():
print(key.__name__)
if task_name in key.__name__:
task_config_cls, task_cls = key, value
break
if task_cls is None:
raise ValueError("Failed to identify the task class. The provided task "
f"name is {task_name}")
# pylint: enable=protected-access
# TODO(hongkuny): Figure out how to separate the task config from experiments.
@dataclasses.dataclass
class Dummy(base_config.Config):
task: task_config_cls = dataclasses.field(default_factory=task_config_cls)
dummy_exp = Dummy()
dummy_exp = hyperparams.override_params_dict(
dummy_exp, config_file, is_strict=False)
dummy_exp.task.validation_data = None
task = task_cls(dummy_exp.task)
model = task.build_model()
export_module_cls = lookup_export_module(task)
params = export_module_cls.Params(**serving_params)
return export_module_cls(params=params, model=model)
def main(_):
serving_params = yaml.load(
hyperparams.nested_csv_str_to_json_str(FLAGS.serving_params),
Loader=yaml.FullLoader)
export_module = create_export_module(
task_name=FLAGS.task_name,
config_file=FLAGS.config_file,
serving_params=serving_params)
export_dir = export_savedmodel_util.export(
export_module,
function_keys=[FLAGS.function_keys],
checkpoint_path=FLAGS.checkpoint_path,
export_savedmodel_dir=FLAGS.export_savedmodel_dir,
module_key=FLAGS.module_key)
if FLAGS.convert_tpu:
# pylint: disable=g-import-not-at-top
from cloud_tpu.inference_converter_v2 import converter_options_v2_pb2
from cloud_tpu.inference_converter_v2.python import converter
tpu_dir = os.path.join(export_dir, "tpu")
batch_options = []
if FLAGS.allowed_batch_size is not None:
allowed_batch_sizes = sorted(FLAGS.allowed_batch_size)
batch_option = converter_options_v2_pb2.BatchOptionsV2(
num_batch_threads=FLAGS.num_batch_threads,
max_batch_size=allowed_batch_sizes[-1],
batch_timeout_micros=FLAGS.batch_timeout_micros,
allowed_batch_sizes=allowed_batch_sizes,
max_enqueued_batches=FLAGS.max_enqueued_batches
)
batch_options.append(batch_option)
converter_options = converter_options_v2_pb2.ConverterOptionsV2(
tpu_functions=[
converter_options_v2_pb2.TpuFunction(function_alias="tpu_candidate")
],
batch_options=batch_options,
)
converter.ConvertSavedModel(export_dir, tpu_dir, converter_options)
if __name__ == "__main__":
define_flags()
app.run(main)
|