Spaces:
Runtime error
Runtime error
File size: 15,078 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for nlp.serving.serving_modules."""
import os
from absl.testing import parameterized
import tensorflow as tf, tf_keras
from sentencepiece import SentencePieceTrainer
from official.core import export_base
from official.nlp.configs import bert
from official.nlp.configs import encoders
from official.nlp.serving import serving_modules
from official.nlp.tasks import masked_lm
from official.nlp.tasks import question_answering
from official.nlp.tasks import sentence_prediction
from official.nlp.tasks import tagging
from official.nlp.tasks import translation
def _create_fake_serialized_examples(features_dict):
"""Creates a fake dataset."""
def create_int_feature(values):
f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
return f
def create_str_feature(value):
f = tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
return f
examples = []
for _ in range(10):
features = {}
for key, values in features_dict.items():
if isinstance(values, bytes):
features[key] = create_str_feature(values)
else:
features[key] = create_int_feature(values)
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
examples.append(tf_example.SerializeToString())
return tf.constant(examples)
def _create_fake_vocab_file(vocab_file_path):
tokens = ["[PAD]"]
for i in range(1, 100):
tokens.append("[unused%d]" % i)
tokens.extend(["[UNK]", "[CLS]", "[SEP]", "[MASK]", "hello", "world"])
with tf.io.gfile.GFile(vocab_file_path, "w") as outfile:
outfile.write("\n".join(tokens))
def _train_sentencepiece(input_path, vocab_size, model_path, eos_id=1):
argstr = " ".join([
f"--input={input_path}", f"--vocab_size={vocab_size}",
"--character_coverage=0.995",
f"--model_prefix={model_path}", "--model_type=bpe",
"--bos_id=-1", "--pad_id=0", f"--eos_id={eos_id}", "--unk_id=2"
])
SentencePieceTrainer.Train(argstr)
def _generate_line_file(filepath, lines):
with tf.io.gfile.GFile(filepath, "w") as f:
for l in lines:
f.write("{}\n".format(l))
def _make_sentencepeice(output_dir):
src_lines = ["abc ede fg", "bbcd ef a g", "de f a a g"]
tgt_lines = ["dd cc a ef g", "bcd ef a g", "gef cd ba"]
sentencepeice_input_path = os.path.join(output_dir, "inputs.txt")
_generate_line_file(sentencepeice_input_path, src_lines + tgt_lines)
sentencepeice_model_prefix = os.path.join(output_dir, "sp")
_train_sentencepiece(sentencepeice_input_path, 11, sentencepeice_model_prefix)
sentencepeice_model_path = "{}.model".format(sentencepeice_model_prefix)
return sentencepeice_model_path
class ServingModulesTest(tf.test.TestCase, parameterized.TestCase):
@parameterized.parameters(
# use_v2_feature_names
True,
False)
def test_sentence_prediction(self, use_v2_feature_names):
if use_v2_feature_names:
input_word_ids_field = "input_word_ids"
input_type_ids_field = "input_type_ids"
else:
input_word_ids_field = "input_ids"
input_type_ids_field = "segment_ids"
config = sentence_prediction.SentencePredictionConfig(
model=sentence_prediction.ModelConfig(
encoder=encoders.EncoderConfig(
bert=encoders.BertEncoderConfig(vocab_size=30522,
num_layers=1)),
num_classes=2))
task = sentence_prediction.SentencePredictionTask(config)
model = task.build_model()
params = serving_modules.SentencePrediction.Params(
inputs_only=True,
parse_sequence_length=10,
use_v2_feature_names=use_v2_feature_names)
export_module = serving_modules.SentencePrediction(
params=params, model=model)
functions = export_module.get_inference_signatures({
"serve": "serving_default",
"serve_examples": "serving_examples"
})
self.assertSameElements(functions.keys(),
["serving_default", "serving_examples"])
dummy_ids = tf.ones((10, 10), dtype=tf.int32)
outputs = functions["serving_default"](dummy_ids)
self.assertEqual(outputs["outputs"].shape, (10, 2))
params = serving_modules.SentencePrediction.Params(
inputs_only=False,
parse_sequence_length=10,
use_v2_feature_names=use_v2_feature_names)
export_module = serving_modules.SentencePrediction(
params=params, model=model)
functions = export_module.get_inference_signatures({
"serve": "serving_default",
"serve_examples": "serving_examples"
})
outputs = functions["serving_default"](
input_word_ids=dummy_ids,
input_mask=dummy_ids,
input_type_ids=dummy_ids)
self.assertEqual(outputs["outputs"].shape, (10, 2))
dummy_ids = tf.ones((10,), dtype=tf.int32)
examples = _create_fake_serialized_examples({
input_word_ids_field: dummy_ids,
"input_mask": dummy_ids,
input_type_ids_field: dummy_ids
})
outputs = functions["serving_examples"](examples)
self.assertEqual(outputs["outputs"].shape, (10, 2))
with self.assertRaises(ValueError):
_ = export_module.get_inference_signatures({"foo": None})
@parameterized.parameters(
# inputs_only
True,
False)
def test_sentence_prediction_text(self, inputs_only):
vocab_file_path = os.path.join(self.get_temp_dir(), "vocab.txt")
_create_fake_vocab_file(vocab_file_path)
config = sentence_prediction.SentencePredictionConfig(
model=sentence_prediction.ModelConfig(
encoder=encoders.EncoderConfig(
bert=encoders.BertEncoderConfig(vocab_size=30522,
num_layers=1)),
num_classes=2))
task = sentence_prediction.SentencePredictionTask(config)
model = task.build_model()
params = serving_modules.SentencePrediction.Params(
inputs_only=inputs_only,
parse_sequence_length=10,
text_fields=["foo", "bar"],
vocab_file=vocab_file_path)
export_module = serving_modules.SentencePrediction(
params=params, model=model)
examples = _create_fake_serialized_examples({
"foo": b"hello world",
"bar": b"hello world"
})
functions = export_module.get_inference_signatures({
"serve_text_examples": "serving_default",
})
outputs = functions["serving_default"](examples)
self.assertEqual(outputs["outputs"].shape, (10, 2))
@parameterized.parameters(
# use_v2_feature_names
True,
False)
def test_masked_lm(self, use_v2_feature_names):
if use_v2_feature_names:
input_word_ids_field = "input_word_ids"
input_type_ids_field = "input_type_ids"
else:
input_word_ids_field = "input_ids"
input_type_ids_field = "segment_ids"
config = masked_lm.MaskedLMConfig(
model=bert.PretrainerConfig(
encoder=encoders.EncoderConfig(
bert=encoders.BertEncoderConfig(vocab_size=30522,
num_layers=1)),
cls_heads=[
bert.ClsHeadConfig(
inner_dim=10, num_classes=2, name="next_sentence")
]))
task = masked_lm.MaskedLMTask(config)
model = task.build_model()
params = serving_modules.MaskedLM.Params(
parse_sequence_length=10,
max_predictions_per_seq=5,
use_v2_feature_names=use_v2_feature_names)
export_module = serving_modules.MaskedLM(params=params, model=model)
functions = export_module.get_inference_signatures({
"serve": "serving_default",
"serve_examples": "serving_examples"
})
self.assertSameElements(functions.keys(),
["serving_default", "serving_examples"])
dummy_ids = tf.ones((10, 10), dtype=tf.int32)
dummy_pos = tf.ones((10, 5), dtype=tf.int32)
outputs = functions["serving_default"](
input_word_ids=dummy_ids,
input_mask=dummy_ids,
input_type_ids=dummy_ids,
masked_lm_positions=dummy_pos)
self.assertEqual(outputs["classification"].shape, (10, 2))
dummy_ids = tf.ones((10,), dtype=tf.int32)
dummy_pos = tf.ones((5,), dtype=tf.int32)
examples = _create_fake_serialized_examples({
input_word_ids_field: dummy_ids,
"input_mask": dummy_ids,
input_type_ids_field: dummy_ids,
"masked_lm_positions": dummy_pos
})
outputs = functions["serving_examples"](examples)
self.assertEqual(outputs["classification"].shape, (10, 2))
@parameterized.parameters(
# use_v2_feature_names
True,
False)
def test_question_answering(self, use_v2_feature_names):
if use_v2_feature_names:
input_word_ids_field = "input_word_ids"
input_type_ids_field = "input_type_ids"
else:
input_word_ids_field = "input_ids"
input_type_ids_field = "segment_ids"
config = question_answering.QuestionAnsweringConfig(
model=question_answering.ModelConfig(
encoder=encoders.EncoderConfig(
bert=encoders.BertEncoderConfig(vocab_size=30522,
num_layers=1))),
validation_data=None)
task = question_answering.QuestionAnsweringTask(config)
model = task.build_model()
params = serving_modules.QuestionAnswering.Params(
parse_sequence_length=10, use_v2_feature_names=use_v2_feature_names)
export_module = serving_modules.QuestionAnswering(
params=params, model=model)
functions = export_module.get_inference_signatures({
"serve": "serving_default",
"serve_examples": "serving_examples"
})
self.assertSameElements(functions.keys(),
["serving_default", "serving_examples"])
dummy_ids = tf.ones((10, 10), dtype=tf.int32)
outputs = functions["serving_default"](
input_word_ids=dummy_ids,
input_mask=dummy_ids,
input_type_ids=dummy_ids)
self.assertEqual(outputs["start_logits"].shape, (10, 10))
self.assertEqual(outputs["end_logits"].shape, (10, 10))
dummy_ids = tf.ones((10,), dtype=tf.int32)
examples = _create_fake_serialized_examples({
input_word_ids_field: dummy_ids,
"input_mask": dummy_ids,
input_type_ids_field: dummy_ids
})
outputs = functions["serving_examples"](examples)
self.assertEqual(outputs["start_logits"].shape, (10, 10))
self.assertEqual(outputs["end_logits"].shape, (10, 10))
@parameterized.parameters(
# (use_v2_feature_names, output_encoder_outputs)
(True, True),
(False, False))
def test_tagging(self, use_v2_feature_names, output_encoder_outputs):
if use_v2_feature_names:
input_word_ids_field = "input_word_ids"
input_type_ids_field = "input_type_ids"
else:
input_word_ids_field = "input_ids"
input_type_ids_field = "segment_ids"
hidden_size = 768
num_classes = 3
config = tagging.TaggingConfig(
model=tagging.ModelConfig(
encoder=encoders.EncoderConfig(
bert=encoders.BertEncoderConfig(
hidden_size=hidden_size, num_layers=1))),
class_names=["class_0", "class_1", "class_2"])
task = tagging.TaggingTask(config)
model = task.build_model()
params = serving_modules.Tagging.Params(
parse_sequence_length=10,
use_v2_feature_names=use_v2_feature_names,
output_encoder_outputs=output_encoder_outputs)
export_module = serving_modules.Tagging(params=params, model=model)
functions = export_module.get_inference_signatures({
"serve": "serving_default",
"serve_examples": "serving_examples"
})
dummy_ids = tf.ones((10, 10), dtype=tf.int32)
outputs = functions["serving_default"](
input_word_ids=dummy_ids,
input_mask=dummy_ids,
input_type_ids=dummy_ids)
self.assertEqual(outputs["logits"].shape, (10, 10, num_classes))
if output_encoder_outputs:
self.assertEqual(outputs["encoder_outputs"].shape, (10, 10, hidden_size))
dummy_ids = tf.ones((10,), dtype=tf.int32)
examples = _create_fake_serialized_examples({
input_word_ids_field: dummy_ids,
"input_mask": dummy_ids,
input_type_ids_field: dummy_ids
})
outputs = functions["serving_examples"](examples)
self.assertEqual(outputs["logits"].shape, (10, 10, num_classes))
if output_encoder_outputs:
self.assertEqual(outputs["encoder_outputs"].shape, (10, 10, hidden_size))
with self.assertRaises(ValueError):
_ = export_module.get_inference_signatures({"foo": None})
@parameterized.parameters(
(False, None),
(True, 2))
def test_translation(self, padded_decode, batch_size):
sp_path = _make_sentencepeice(self.get_temp_dir())
encdecoder = translation.EncDecoder(
num_attention_heads=4, intermediate_size=256)
config = translation.TranslationConfig(
model=translation.ModelConfig(
encoder=encdecoder,
decoder=encdecoder,
embedding_width=256,
padded_decode=padded_decode,
decode_max_length=100),
sentencepiece_model_path=sp_path,
)
task = translation.TranslationTask(config)
model = task.build_model()
params = serving_modules.Translation.Params(
sentencepiece_model_path=sp_path, batch_size=batch_size)
export_module = serving_modules.Translation(params=params, model=model)
functions = export_module.get_inference_signatures({
"serve_text": "serving_default"
})
outputs = functions["serving_default"](tf.constant(["abcd", "ef gh"]))
self.assertEqual(outputs.shape, (2,))
self.assertEqual(outputs.dtype, tf.string)
tmp_dir = self.get_temp_dir()
tmp_dir = os.path.join(tmp_dir, "padded_decode", str(padded_decode))
export_base_dir = os.path.join(tmp_dir, "export")
ckpt_dir = os.path.join(tmp_dir, "ckpt")
ckpt_path = tf.train.Checkpoint(model=model).save(ckpt_dir)
export_dir = export_base.export(export_module,
{"serve_text": "serving_default"},
export_base_dir, ckpt_path)
loaded = tf.saved_model.load(export_dir)
infer = loaded.signatures["serving_default"]
out = infer(text=tf.constant(["abcd", "ef gh"]))
self.assertLen(out["output_0"], 2)
if __name__ == "__main__":
tf.test.main()
|