Spaces:
Runtime error
Runtime error
File size: 19,979 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Question answering task."""
import dataclasses
import functools
import json
import os
from typing import List, Optional
from absl import logging
import orbit
import tensorflow as tf, tf_keras
from official.core import base_task
from official.core import config_definitions as cfg
from official.core import task_factory
from official.modeling.hyperparams import base_config
from official.nlp.configs import encoders
from official.nlp.data import data_loader_factory
from official.nlp.data import squad_lib as squad_lib_wp
from official.nlp.data import squad_lib_sp
from official.nlp.modeling import models
from official.nlp.tasks import utils
from official.nlp.tools import squad_evaluate_v1_1
from official.nlp.tools import squad_evaluate_v2_0
from official.nlp.tools import tokenization
@dataclasses.dataclass
class ModelConfig(base_config.Config):
"""A base span labeler configuration."""
encoder: encoders.EncoderConfig = dataclasses.field(
default_factory=encoders.EncoderConfig
)
@dataclasses.dataclass
class QuestionAnsweringConfig(cfg.TaskConfig):
"""The model config."""
# At most one of `init_checkpoint` and `hub_module_url` can be specified.
init_checkpoint: str = ''
hub_module_url: str = ''
n_best_size: int = 20
max_answer_length: int = 30
null_score_diff_threshold: float = 0.0
model: ModelConfig = dataclasses.field(default_factory=ModelConfig)
train_data: cfg.DataConfig = dataclasses.field(default_factory=cfg.DataConfig)
validation_data: cfg.DataConfig = dataclasses.field(
default_factory=cfg.DataConfig
)
@dataclasses.dataclass
class RawAggregatedResult:
"""Raw representation for SQuAD predictions."""
unique_id: int
start_logits: List[float]
end_logits: List[float]
start_indexes: Optional[List[int]] = None
end_indexes: Optional[List[int]] = None
class_logits: Optional[float] = None
@task_factory.register_task_cls(QuestionAnsweringConfig)
class QuestionAnsweringTask(base_task.Task):
"""Task object for question answering."""
def __init__(self, params: cfg.TaskConfig, logging_dir=None, name=None):
super().__init__(params, logging_dir, name=name)
if params.validation_data is None:
return
if params.validation_data.tokenization == 'WordPiece':
self.squad_lib = squad_lib_wp
elif params.validation_data.tokenization == 'SentencePiece':
self.squad_lib = squad_lib_sp
else:
raise ValueError('Unsupported tokenization method: {}'.format(
params.validation_data.tokenization))
if params.validation_data.input_path:
self._tf_record_input_path, self._eval_examples, self._eval_features = (
self._preprocess_eval_data(params.validation_data))
def set_preprocessed_eval_input_path(self, eval_input_path):
"""Sets the path to the preprocessed eval data."""
self._tf_record_input_path = eval_input_path
def build_model(self):
if self.task_config.hub_module_url and self.task_config.init_checkpoint:
raise ValueError('At most one of `hub_module_url` and '
'`init_checkpoint` can be specified.')
if self.task_config.hub_module_url:
encoder_network = utils.get_encoder_from_hub(
self.task_config.hub_module_url)
else:
encoder_network = encoders.build_encoder(self.task_config.model.encoder)
encoder_cfg = self.task_config.model.encoder.get()
return models.BertSpanLabeler(
network=encoder_network,
initializer=tf_keras.initializers.TruncatedNormal(
stddev=encoder_cfg.initializer_range))
def build_losses(self, labels, model_outputs, aux_losses=None) -> tf.Tensor:
start_positions = labels['start_positions']
end_positions = labels['end_positions']
start_logits, end_logits = model_outputs
start_loss = tf_keras.losses.sparse_categorical_crossentropy(
start_positions,
tf.cast(start_logits, dtype=tf.float32),
from_logits=True)
end_loss = tf_keras.losses.sparse_categorical_crossentropy(
end_positions, tf.cast(end_logits, dtype=tf.float32), from_logits=True)
loss = (tf.reduce_mean(start_loss) + tf.reduce_mean(end_loss)) / 2
return loss
def _preprocess_eval_data(self, params):
eval_examples = self.squad_lib.read_squad_examples(
input_file=params.input_path,
is_training=False,
version_2_with_negative=params.version_2_with_negative)
temp_file_path = params.input_preprocessed_data_path or self.logging_dir
if not temp_file_path:
raise ValueError('You must specify a temporary directory, either in '
'params.input_preprocessed_data_path or logging_dir to '
'store intermediate evaluation TFRecord data.')
eval_writer = self.squad_lib.FeatureWriter(
filename=os.path.join(temp_file_path, 'eval.tf_record'),
is_training=False)
eval_features = []
def _append_feature(feature, is_padding):
if not is_padding:
eval_features.append(feature)
eval_writer.process_feature(feature)
# XLNet preprocesses SQuAD examples in a P, Q, class order whereas
# BERT preprocesses in a class, Q, P order.
xlnet_ordering = self.task_config.model.encoder.type == 'xlnet'
kwargs = dict(
examples=eval_examples,
max_seq_length=params.seq_length,
doc_stride=params.doc_stride,
max_query_length=params.query_length,
is_training=False,
output_fn=_append_feature,
batch_size=params.global_batch_size,
xlnet_format=xlnet_ordering)
if params.tokenization == 'SentencePiece':
# squad_lib_sp requires one more argument 'do_lower_case'.
kwargs['do_lower_case'] = params.do_lower_case
kwargs['tokenizer'] = tokenization.FullSentencePieceTokenizer(
sp_model_file=params.vocab_file)
elif params.tokenization == 'WordPiece':
kwargs['tokenizer'] = tokenization.FullTokenizer(
vocab_file=params.vocab_file, do_lower_case=params.do_lower_case)
else:
raise ValueError('Unexpected tokenization: %s' % params.tokenization)
eval_dataset_size = self.squad_lib.convert_examples_to_features(**kwargs)
eval_writer.close()
logging.info('***** Evaluation input stats *****')
logging.info(' Num orig examples = %d', len(eval_examples))
logging.info(' Num split examples = %d', len(eval_features))
logging.info(' Batch size = %d', params.global_batch_size)
logging.info(' Dataset size = %d', eval_dataset_size)
return eval_writer.filename, eval_examples, eval_features
def _dummy_data(self, params, _):
"""Returns dummy data."""
dummy_ids = tf.zeros((1, params.seq_length), dtype=tf.int32)
x = dict(
input_word_ids=dummy_ids,
input_mask=dummy_ids,
input_type_ids=dummy_ids)
y = dict(
start_positions=tf.constant(0, dtype=tf.int32),
end_positions=tf.constant(1, dtype=tf.int32),
is_impossible=tf.constant(0, dtype=tf.int32))
return x, y
def build_inputs(self, params, input_context=None):
"""Returns tf.data.Dataset for sentence_prediction task."""
if params.input_path == 'dummy':
dataset = tf.data.Dataset.range(1)
dataset = dataset.repeat()
dummy_data = functools.partial(self._dummy_data, params)
dataset = dataset.map(
dummy_data, num_parallel_calls=tf.data.experimental.AUTOTUNE)
return dataset
if params.is_training:
dataloader_params = params
else:
input_path = self._tf_record_input_path
dataloader_params = params.replace(input_path=input_path)
return data_loader_factory.get_data_loader(dataloader_params).load(
input_context)
def build_metrics(self, training=None):
if not training:
# We cannot compute start/end_position_accuracy because start/end_position
# labels are not available in the validation dataset (b/173794928).
return []
# TODO(lehou): a list of metrics doesn't work the same as in compile/fit.
metrics = [
tf_keras.metrics.SparseCategoricalAccuracy(
name='start_position_accuracy'),
tf_keras.metrics.SparseCategoricalAccuracy(
name='end_position_accuracy'),
]
return metrics
def process_metrics(self, metrics, labels, model_outputs):
metrics = dict([(metric.name, metric) for metric in metrics])
start_logits, end_logits = model_outputs
metrics['start_position_accuracy'].update_state(labels['start_positions'],
start_logits)
metrics['end_position_accuracy'].update_state(labels['end_positions'],
end_logits)
def process_compiled_metrics(self, compiled_metrics, labels, model_outputs):
start_logits, end_logits = model_outputs
compiled_metrics.update_state(
y_true=labels, # labels has keys 'start_positions' and 'end_positions'.
y_pred={
'start_positions': start_logits,
'end_positions': end_logits
})
def validation_step(self, inputs, model: tf_keras.Model, metrics=None):
features, _ = inputs
unique_ids = features.pop('unique_ids')
model_outputs = self.inference_step(features, model)
start_logits, end_logits = model_outputs
# We cannot compute validation_loss here, because start/end_position
# labels are not available in the validation dataset (b/173794928).
logs = {
'unique_ids': unique_ids,
'start_logits': start_logits,
'end_logits': end_logits,
}
return logs
def aggregate_logs(self, state=None, step_outputs=None):
assert step_outputs is not None, 'Got no logs from self.validation_step.'
if state is None:
state = []
for outputs in zip(step_outputs['unique_ids'],
step_outputs['start_logits'],
step_outputs['end_logits']):
numpy_values = [
output.numpy() for output in outputs if output is not None]
for values in zip(*numpy_values):
state.append(RawAggregatedResult(
unique_id=values[0],
start_logits=values[1],
end_logits=values[2]))
return state
def reduce_aggregated_logs(self, aggregated_logs, global_step=None):
all_predictions, _, scores_diff = (
self.squad_lib.postprocess_output(
self._eval_examples,
self._eval_features,
aggregated_logs,
self.task_config.n_best_size,
self.task_config.max_answer_length,
self.task_config.validation_data.do_lower_case,
version_2_with_negative=(
self.task_config.validation_data.version_2_with_negative),
null_score_diff_threshold=(
self.task_config.null_score_diff_threshold),
xlnet_format=self.task_config.validation_data.xlnet_format,
verbose=False))
with tf.io.gfile.GFile(self.task_config.validation_data.input_path,
'r') as reader:
dataset_json = json.load(reader)
pred_dataset = dataset_json['data']
if self.task_config.validation_data.version_2_with_negative:
eval_metrics = squad_evaluate_v2_0.evaluate(pred_dataset, all_predictions,
scores_diff)
eval_metrics = {
'exact_match': eval_metrics['final_exact'],
'exact_match_threshold': eval_metrics['final_exact_thresh'],
'final_f1': eval_metrics['final_f1'] / 100.0, # scale back to [0, 1].
'f1_threshold': eval_metrics['final_f1_thresh'],
'has_answer_exact_match': eval_metrics['HasAns_exact'],
'has_answer_f1': eval_metrics['HasAns_f1']
}
else:
eval_metrics = squad_evaluate_v1_1.evaluate(pred_dataset, all_predictions)
eval_metrics = {
'exact_match': eval_metrics['exact_match'],
'final_f1': eval_metrics['final_f1']
}
return eval_metrics
@dataclasses.dataclass
class XLNetQuestionAnsweringConfig(QuestionAnsweringConfig):
"""The config for the XLNet variation of QuestionAnswering."""
pass
@task_factory.register_task_cls(XLNetQuestionAnsweringConfig)
class XLNetQuestionAnsweringTask(QuestionAnsweringTask):
"""XLNet variant of the Question Answering Task.
The main differences include:
- The encoder is an `XLNetBase` class.
- The `SpanLabeling` head is an instance of `XLNetSpanLabeling` which
predicts start/end positions and impossibility score. During inference,
it predicts the top N scores and indexes.
"""
def build_model(self):
if self.task_config.hub_module_url and self.task_config.init_checkpoint:
raise ValueError('At most one of `hub_module_url` and '
'`init_checkpoint` can be specified.')
if self.task_config.hub_module_url:
encoder_network = utils.get_encoder_from_hub(
self.task_config.hub_module_url)
else:
encoder_network = encoders.build_encoder(self.task_config.model.encoder)
encoder_cfg = self.task_config.model.encoder.get()
return models.XLNetSpanLabeler(
network=encoder_network,
start_n_top=self.task_config.n_best_size,
end_n_top=self.task_config.n_best_size,
initializer=tf_keras.initializers.RandomNormal(
stddev=encoder_cfg.initializer_range))
def build_losses(self, labels, model_outputs, aux_losses=None) -> tf.Tensor:
start_positions = labels['start_positions']
end_positions = labels['end_positions']
is_impossible = labels['is_impossible']
is_impossible = tf.cast(tf.reshape(is_impossible, [-1]), tf.float32)
start_logits = model_outputs['start_logits']
end_logits = model_outputs['end_logits']
class_logits = model_outputs['class_logits']
start_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
start_positions, start_logits)
end_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
end_positions, end_logits)
is_impossible_loss = tf_keras.losses.binary_crossentropy(
is_impossible, class_logits, from_logits=True)
loss = (tf.reduce_mean(start_loss) + tf.reduce_mean(end_loss)) / 2
loss += tf.reduce_mean(is_impossible_loss) / 2
return loss
def process_metrics(self, metrics, labels, model_outputs):
metrics = dict([(metric.name, metric) for metric in metrics])
start_logits = model_outputs['start_logits']
end_logits = model_outputs['end_logits']
metrics['start_position_accuracy'].update_state(labels['start_positions'],
start_logits)
metrics['end_position_accuracy'].update_state(labels['end_positions'],
end_logits)
def process_compiled_metrics(self, compiled_metrics, labels, model_outputs):
start_logits = model_outputs['start_logits']
end_logits = model_outputs['end_logits']
compiled_metrics.update_state(
y_true=labels, # labels has keys 'start_positions' and 'end_positions'.
y_pred={
'start_positions': start_logits,
'end_positions': end_logits,
})
def _dummy_data(self, params, _):
"""Returns dummy data."""
dummy_ids = tf.zeros((1, params.seq_length), dtype=tf.int32)
zero = tf.constant(0, dtype=tf.int32)
x = dict(
input_word_ids=dummy_ids,
input_mask=dummy_ids,
input_type_ids=dummy_ids,
class_index=zero,
is_impossible=zero,
paragraph_mask=dummy_ids,
start_positions=tf.zeros((1), dtype=tf.int32))
y = dict(
start_positions=tf.zeros((1), dtype=tf.int32),
end_positions=tf.ones((1), dtype=tf.int32),
is_impossible=zero)
return x, y
def validation_step(self, inputs, model: tf_keras.Model, metrics=None):
features, _ = inputs
unique_ids = features.pop('unique_ids')
model_outputs = self.inference_step(features, model)
start_top_predictions = model_outputs['start_top_predictions']
end_top_predictions = model_outputs['end_top_predictions']
start_indexes = model_outputs['start_top_index']
end_indexes = model_outputs['end_top_index']
class_logits = model_outputs['class_logits']
logs = {
'unique_ids': unique_ids,
'start_top_predictions': start_top_predictions,
'end_top_predictions': end_top_predictions,
'start_indexes': start_indexes,
'end_indexes': end_indexes,
'class_logits': class_logits,
}
return logs
def aggregate_logs(self, state=None, step_outputs=None):
assert step_outputs is not None, 'Got no logs from self.validation_step.'
if state is None:
state = []
for outputs in zip(step_outputs['unique_ids'],
step_outputs['start_top_predictions'],
step_outputs['end_top_predictions'],
step_outputs['start_indexes'],
step_outputs['end_indexes'],
step_outputs['class_logits']):
numpy_values = [
output.numpy() for output in outputs]
for (unique_id, start_top_predictions, end_top_predictions, start_indexes,
end_indexes, class_logits) in zip(*numpy_values):
state.append(RawAggregatedResult(
unique_id=unique_id,
start_logits=start_top_predictions.tolist(),
end_logits=end_top_predictions.tolist(),
start_indexes=start_indexes.tolist(),
end_indexes=end_indexes.tolist(),
class_logits=class_logits))
return state
def predict(task: QuestionAnsweringTask, params: cfg.DataConfig,
model: tf_keras.Model):
"""Predicts on the input data.
Args:
task: A `QuestionAnsweringTask` object.
params: A `cfg.DataConfig` object.
model: A keras.Model.
Returns:
A tuple of `all_predictions`, `all_nbest` and `scores_diff`, which
are dict and can be written to json files including prediction json file,
nbest json file and null_odds json file.
"""
tf_record_input_path, eval_examples, eval_features = (
task._preprocess_eval_data(params)) # pylint: disable=protected-access
# `tf_record_input_path` will overwrite `params.input_path`,
# when `task.buid_inputs()` is called.
task.set_preprocessed_eval_input_path(tf_record_input_path)
def predict_step(inputs):
"""Replicated prediction calculation."""
return task.validation_step(inputs, model)
dataset = orbit.utils.make_distributed_dataset(tf.distribute.get_strategy(),
task.build_inputs, params)
aggregated_outputs = utils.predict(predict_step, task.aggregate_logs, dataset)
all_predictions, all_nbest, scores_diff = (
task.squad_lib.postprocess_output(
eval_examples,
eval_features,
aggregated_outputs,
task.task_config.n_best_size,
task.task_config.max_answer_length,
task.task_config.validation_data.do_lower_case,
version_2_with_negative=(params.version_2_with_negative),
null_score_diff_threshold=task.task_config.null_score_diff_threshold,
xlnet_format=task.task_config.validation_data.xlnet_format,
verbose=False))
return all_predictions, all_nbest, scores_diff
|