File size: 19,979 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Question answering task."""
import dataclasses
import functools
import json
import os
from typing import List, Optional

from absl import logging
import orbit
import tensorflow as tf, tf_keras

from official.core import base_task
from official.core import config_definitions as cfg
from official.core import task_factory
from official.modeling.hyperparams import base_config
from official.nlp.configs import encoders
from official.nlp.data import data_loader_factory
from official.nlp.data import squad_lib as squad_lib_wp
from official.nlp.data import squad_lib_sp
from official.nlp.modeling import models
from official.nlp.tasks import utils
from official.nlp.tools import squad_evaluate_v1_1
from official.nlp.tools import squad_evaluate_v2_0
from official.nlp.tools import tokenization


@dataclasses.dataclass
class ModelConfig(base_config.Config):
  """A base span labeler configuration."""
  encoder: encoders.EncoderConfig = dataclasses.field(
      default_factory=encoders.EncoderConfig
  )


@dataclasses.dataclass
class QuestionAnsweringConfig(cfg.TaskConfig):
  """The model config."""
  # At most one of `init_checkpoint` and `hub_module_url` can be specified.
  init_checkpoint: str = ''
  hub_module_url: str = ''
  n_best_size: int = 20
  max_answer_length: int = 30
  null_score_diff_threshold: float = 0.0
  model: ModelConfig = dataclasses.field(default_factory=ModelConfig)
  train_data: cfg.DataConfig = dataclasses.field(default_factory=cfg.DataConfig)
  validation_data: cfg.DataConfig = dataclasses.field(
      default_factory=cfg.DataConfig
  )


@dataclasses.dataclass
class RawAggregatedResult:
  """Raw representation for SQuAD predictions."""
  unique_id: int
  start_logits: List[float]
  end_logits: List[float]
  start_indexes: Optional[List[int]] = None
  end_indexes: Optional[List[int]] = None
  class_logits: Optional[float] = None


@task_factory.register_task_cls(QuestionAnsweringConfig)
class QuestionAnsweringTask(base_task.Task):
  """Task object for question answering."""

  def __init__(self, params: cfg.TaskConfig, logging_dir=None, name=None):
    super().__init__(params, logging_dir, name=name)

    if params.validation_data is None:
      return

    if params.validation_data.tokenization == 'WordPiece':
      self.squad_lib = squad_lib_wp
    elif params.validation_data.tokenization == 'SentencePiece':
      self.squad_lib = squad_lib_sp
    else:
      raise ValueError('Unsupported tokenization method: {}'.format(
          params.validation_data.tokenization))

    if params.validation_data.input_path:
      self._tf_record_input_path, self._eval_examples, self._eval_features = (
          self._preprocess_eval_data(params.validation_data))

  def set_preprocessed_eval_input_path(self, eval_input_path):
    """Sets the path to the preprocessed eval data."""
    self._tf_record_input_path = eval_input_path

  def build_model(self):
    if self.task_config.hub_module_url and self.task_config.init_checkpoint:
      raise ValueError('At most one of `hub_module_url` and '
                       '`init_checkpoint` can be specified.')
    if self.task_config.hub_module_url:
      encoder_network = utils.get_encoder_from_hub(
          self.task_config.hub_module_url)
    else:
      encoder_network = encoders.build_encoder(self.task_config.model.encoder)
    encoder_cfg = self.task_config.model.encoder.get()
    return models.BertSpanLabeler(
        network=encoder_network,
        initializer=tf_keras.initializers.TruncatedNormal(
            stddev=encoder_cfg.initializer_range))

  def build_losses(self, labels, model_outputs, aux_losses=None) -> tf.Tensor:
    start_positions = labels['start_positions']
    end_positions = labels['end_positions']
    start_logits, end_logits = model_outputs

    start_loss = tf_keras.losses.sparse_categorical_crossentropy(
        start_positions,
        tf.cast(start_logits, dtype=tf.float32),
        from_logits=True)
    end_loss = tf_keras.losses.sparse_categorical_crossentropy(
        end_positions, tf.cast(end_logits, dtype=tf.float32), from_logits=True)

    loss = (tf.reduce_mean(start_loss) + tf.reduce_mean(end_loss)) / 2
    return loss

  def _preprocess_eval_data(self, params):
    eval_examples = self.squad_lib.read_squad_examples(
        input_file=params.input_path,
        is_training=False,
        version_2_with_negative=params.version_2_with_negative)

    temp_file_path = params.input_preprocessed_data_path or self.logging_dir
    if not temp_file_path:
      raise ValueError('You must specify a temporary directory, either in '
                       'params.input_preprocessed_data_path or logging_dir to '
                       'store intermediate evaluation TFRecord data.')
    eval_writer = self.squad_lib.FeatureWriter(
        filename=os.path.join(temp_file_path, 'eval.tf_record'),
        is_training=False)
    eval_features = []

    def _append_feature(feature, is_padding):
      if not is_padding:
        eval_features.append(feature)
      eval_writer.process_feature(feature)

    # XLNet preprocesses SQuAD examples in a P, Q, class order whereas
    # BERT preprocesses in a class, Q, P order.
    xlnet_ordering = self.task_config.model.encoder.type == 'xlnet'
    kwargs = dict(
        examples=eval_examples,
        max_seq_length=params.seq_length,
        doc_stride=params.doc_stride,
        max_query_length=params.query_length,
        is_training=False,
        output_fn=_append_feature,
        batch_size=params.global_batch_size,
        xlnet_format=xlnet_ordering)

    if params.tokenization == 'SentencePiece':
      # squad_lib_sp requires one more argument 'do_lower_case'.
      kwargs['do_lower_case'] = params.do_lower_case
      kwargs['tokenizer'] = tokenization.FullSentencePieceTokenizer(
          sp_model_file=params.vocab_file)
    elif params.tokenization == 'WordPiece':
      kwargs['tokenizer'] = tokenization.FullTokenizer(
          vocab_file=params.vocab_file, do_lower_case=params.do_lower_case)
    else:
      raise ValueError('Unexpected tokenization: %s' % params.tokenization)

    eval_dataset_size = self.squad_lib.convert_examples_to_features(**kwargs)
    eval_writer.close()

    logging.info('***** Evaluation input stats *****')
    logging.info('  Num orig examples = %d', len(eval_examples))
    logging.info('  Num split examples = %d', len(eval_features))
    logging.info('  Batch size = %d', params.global_batch_size)
    logging.info('  Dataset size = %d', eval_dataset_size)

    return eval_writer.filename, eval_examples, eval_features

  def _dummy_data(self, params, _):
    """Returns dummy data."""
    dummy_ids = tf.zeros((1, params.seq_length), dtype=tf.int32)
    x = dict(
        input_word_ids=dummy_ids,
        input_mask=dummy_ids,
        input_type_ids=dummy_ids)
    y = dict(
        start_positions=tf.constant(0, dtype=tf.int32),
        end_positions=tf.constant(1, dtype=tf.int32),
        is_impossible=tf.constant(0, dtype=tf.int32))
    return x, y

  def build_inputs(self, params, input_context=None):
    """Returns tf.data.Dataset for sentence_prediction task."""
    if params.input_path == 'dummy':
      dataset = tf.data.Dataset.range(1)
      dataset = dataset.repeat()
      dummy_data = functools.partial(self._dummy_data, params)
      dataset = dataset.map(
          dummy_data, num_parallel_calls=tf.data.experimental.AUTOTUNE)
      return dataset

    if params.is_training:
      dataloader_params = params
    else:
      input_path = self._tf_record_input_path
      dataloader_params = params.replace(input_path=input_path)

    return data_loader_factory.get_data_loader(dataloader_params).load(
        input_context)

  def build_metrics(self, training=None):
    if not training:
      # We cannot compute start/end_position_accuracy because start/end_position
      # labels are not available in the validation dataset (b/173794928).
      return []
    # TODO(lehou): a list of metrics doesn't work the same as in compile/fit.
    metrics = [
        tf_keras.metrics.SparseCategoricalAccuracy(
            name='start_position_accuracy'),
        tf_keras.metrics.SparseCategoricalAccuracy(
            name='end_position_accuracy'),
    ]
    return metrics

  def process_metrics(self, metrics, labels, model_outputs):
    metrics = dict([(metric.name, metric) for metric in metrics])
    start_logits, end_logits = model_outputs
    metrics['start_position_accuracy'].update_state(labels['start_positions'],
                                                    start_logits)
    metrics['end_position_accuracy'].update_state(labels['end_positions'],
                                                  end_logits)

  def process_compiled_metrics(self, compiled_metrics, labels, model_outputs):
    start_logits, end_logits = model_outputs
    compiled_metrics.update_state(
        y_true=labels,  # labels has keys 'start_positions' and 'end_positions'.
        y_pred={
            'start_positions': start_logits,
            'end_positions': end_logits
        })

  def validation_step(self, inputs, model: tf_keras.Model, metrics=None):
    features, _ = inputs
    unique_ids = features.pop('unique_ids')
    model_outputs = self.inference_step(features, model)
    start_logits, end_logits = model_outputs
    # We cannot compute validation_loss here, because start/end_position
    # labels are not available in the validation dataset (b/173794928).
    logs = {
        'unique_ids': unique_ids,
        'start_logits': start_logits,
        'end_logits': end_logits,
    }
    return logs

  def aggregate_logs(self, state=None, step_outputs=None):
    assert step_outputs is not None, 'Got no logs from self.validation_step.'
    if state is None:
      state = []

    for outputs in zip(step_outputs['unique_ids'],
                       step_outputs['start_logits'],
                       step_outputs['end_logits']):
      numpy_values = [
          output.numpy() for output in outputs if output is not None]

      for values in zip(*numpy_values):
        state.append(RawAggregatedResult(
            unique_id=values[0],
            start_logits=values[1],
            end_logits=values[2]))
    return state

  def reduce_aggregated_logs(self, aggregated_logs, global_step=None):
    all_predictions, _, scores_diff = (
        self.squad_lib.postprocess_output(
            self._eval_examples,
            self._eval_features,
            aggregated_logs,
            self.task_config.n_best_size,
            self.task_config.max_answer_length,
            self.task_config.validation_data.do_lower_case,
            version_2_with_negative=(
                self.task_config.validation_data.version_2_with_negative),
            null_score_diff_threshold=(
                self.task_config.null_score_diff_threshold),
            xlnet_format=self.task_config.validation_data.xlnet_format,
            verbose=False))

    with tf.io.gfile.GFile(self.task_config.validation_data.input_path,
                           'r') as reader:
      dataset_json = json.load(reader)
      pred_dataset = dataset_json['data']
    if self.task_config.validation_data.version_2_with_negative:
      eval_metrics = squad_evaluate_v2_0.evaluate(pred_dataset, all_predictions,
                                                  scores_diff)
      eval_metrics = {
          'exact_match': eval_metrics['final_exact'],
          'exact_match_threshold': eval_metrics['final_exact_thresh'],
          'final_f1': eval_metrics['final_f1'] / 100.0,  # scale back to [0, 1].
          'f1_threshold': eval_metrics['final_f1_thresh'],
          'has_answer_exact_match': eval_metrics['HasAns_exact'],
          'has_answer_f1': eval_metrics['HasAns_f1']
      }
    else:
      eval_metrics = squad_evaluate_v1_1.evaluate(pred_dataset, all_predictions)
      eval_metrics = {
          'exact_match': eval_metrics['exact_match'],
          'final_f1': eval_metrics['final_f1']
      }
    return eval_metrics


@dataclasses.dataclass
class XLNetQuestionAnsweringConfig(QuestionAnsweringConfig):
  """The config for the XLNet variation of QuestionAnswering."""
  pass


@task_factory.register_task_cls(XLNetQuestionAnsweringConfig)
class XLNetQuestionAnsweringTask(QuestionAnsweringTask):
  """XLNet variant of the Question Answering Task.

  The main differences include:
    - The encoder is an `XLNetBase` class.
    - The `SpanLabeling` head is an instance of `XLNetSpanLabeling` which
      predicts start/end positions and impossibility score. During inference,
      it predicts the top N scores and indexes.
  """

  def build_model(self):
    if self.task_config.hub_module_url and self.task_config.init_checkpoint:
      raise ValueError('At most one of `hub_module_url` and '
                       '`init_checkpoint` can be specified.')
    if self.task_config.hub_module_url:
      encoder_network = utils.get_encoder_from_hub(
          self.task_config.hub_module_url)
    else:
      encoder_network = encoders.build_encoder(self.task_config.model.encoder)
    encoder_cfg = self.task_config.model.encoder.get()
    return models.XLNetSpanLabeler(
        network=encoder_network,
        start_n_top=self.task_config.n_best_size,
        end_n_top=self.task_config.n_best_size,
        initializer=tf_keras.initializers.RandomNormal(
            stddev=encoder_cfg.initializer_range))

  def build_losses(self, labels, model_outputs, aux_losses=None) -> tf.Tensor:
    start_positions = labels['start_positions']
    end_positions = labels['end_positions']
    is_impossible = labels['is_impossible']
    is_impossible = tf.cast(tf.reshape(is_impossible, [-1]), tf.float32)

    start_logits = model_outputs['start_logits']
    end_logits = model_outputs['end_logits']
    class_logits = model_outputs['class_logits']

    start_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
        start_positions, start_logits)
    end_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
        end_positions, end_logits)
    is_impossible_loss = tf_keras.losses.binary_crossentropy(
        is_impossible, class_logits, from_logits=True)

    loss = (tf.reduce_mean(start_loss) + tf.reduce_mean(end_loss)) / 2
    loss += tf.reduce_mean(is_impossible_loss) / 2
    return loss

  def process_metrics(self, metrics, labels, model_outputs):
    metrics = dict([(metric.name, metric) for metric in metrics])
    start_logits = model_outputs['start_logits']
    end_logits = model_outputs['end_logits']
    metrics['start_position_accuracy'].update_state(labels['start_positions'],
                                                    start_logits)
    metrics['end_position_accuracy'].update_state(labels['end_positions'],
                                                  end_logits)

  def process_compiled_metrics(self, compiled_metrics, labels, model_outputs):
    start_logits = model_outputs['start_logits']
    end_logits = model_outputs['end_logits']
    compiled_metrics.update_state(
        y_true=labels,  # labels has keys 'start_positions' and 'end_positions'.
        y_pred={
            'start_positions': start_logits,
            'end_positions': end_logits,
        })

  def _dummy_data(self, params, _):
    """Returns dummy data."""
    dummy_ids = tf.zeros((1, params.seq_length), dtype=tf.int32)
    zero = tf.constant(0, dtype=tf.int32)
    x = dict(
        input_word_ids=dummy_ids,
        input_mask=dummy_ids,
        input_type_ids=dummy_ids,
        class_index=zero,
        is_impossible=zero,
        paragraph_mask=dummy_ids,
        start_positions=tf.zeros((1), dtype=tf.int32))
    y = dict(
        start_positions=tf.zeros((1), dtype=tf.int32),
        end_positions=tf.ones((1), dtype=tf.int32),
        is_impossible=zero)
    return x, y

  def validation_step(self, inputs, model: tf_keras.Model, metrics=None):
    features, _ = inputs
    unique_ids = features.pop('unique_ids')
    model_outputs = self.inference_step(features, model)
    start_top_predictions = model_outputs['start_top_predictions']
    end_top_predictions = model_outputs['end_top_predictions']
    start_indexes = model_outputs['start_top_index']
    end_indexes = model_outputs['end_top_index']
    class_logits = model_outputs['class_logits']

    logs = {
        'unique_ids': unique_ids,
        'start_top_predictions': start_top_predictions,
        'end_top_predictions': end_top_predictions,
        'start_indexes': start_indexes,
        'end_indexes': end_indexes,
        'class_logits': class_logits,
    }
    return logs

  def aggregate_logs(self, state=None, step_outputs=None):
    assert step_outputs is not None, 'Got no logs from self.validation_step.'
    if state is None:
      state = []

    for outputs in zip(step_outputs['unique_ids'],
                       step_outputs['start_top_predictions'],
                       step_outputs['end_top_predictions'],
                       step_outputs['start_indexes'],
                       step_outputs['end_indexes'],
                       step_outputs['class_logits']):
      numpy_values = [
          output.numpy() for output in outputs]

      for (unique_id, start_top_predictions, end_top_predictions, start_indexes,
           end_indexes, class_logits) in zip(*numpy_values):
        state.append(RawAggregatedResult(
            unique_id=unique_id,
            start_logits=start_top_predictions.tolist(),
            end_logits=end_top_predictions.tolist(),
            start_indexes=start_indexes.tolist(),
            end_indexes=end_indexes.tolist(),
            class_logits=class_logits))
    return state


def predict(task: QuestionAnsweringTask, params: cfg.DataConfig,
            model: tf_keras.Model):
  """Predicts on the input data.

  Args:
    task: A `QuestionAnsweringTask` object.
    params: A `cfg.DataConfig` object.
    model: A keras.Model.

  Returns:
    A tuple of `all_predictions`, `all_nbest` and `scores_diff`, which
      are dict and can be written to json files including prediction json file,
      nbest json file and null_odds json file.
  """
  tf_record_input_path, eval_examples, eval_features = (
      task._preprocess_eval_data(params))  # pylint: disable=protected-access

  # `tf_record_input_path` will overwrite `params.input_path`,
  # when `task.buid_inputs()` is called.
  task.set_preprocessed_eval_input_path(tf_record_input_path)

  def predict_step(inputs):
    """Replicated prediction calculation."""
    return task.validation_step(inputs, model)

  dataset = orbit.utils.make_distributed_dataset(tf.distribute.get_strategy(),
                                                 task.build_inputs, params)
  aggregated_outputs = utils.predict(predict_step, task.aggregate_logs, dataset)

  all_predictions, all_nbest, scores_diff = (
      task.squad_lib.postprocess_output(
          eval_examples,
          eval_features,
          aggregated_outputs,
          task.task_config.n_best_size,
          task.task_config.max_answer_length,
          task.task_config.validation_data.do_lower_case,
          version_2_with_negative=(params.version_2_with_negative),
          null_score_diff_threshold=task.task_config.null_score_diff_threshold,
          xlnet_format=task.task_config.validation_data.xlnet_format,
          verbose=False))
  return all_predictions, all_nbest, scores_diff