Spaces:
Runtime error
Runtime error
File size: 12,648 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Sentence prediction (classification) task."""
import dataclasses
from typing import List, Union, Optional
from absl import logging
import numpy as np
import orbit
from scipy import stats
from sklearn import metrics as sklearn_metrics
import tensorflow as tf, tf_keras
from official.core import base_task
from official.core import config_definitions as cfg
from official.core import task_factory
from official.modeling import tf_utils
from official.modeling.hyperparams import base_config
from official.nlp.configs import encoders
from official.nlp.data import data_loader_factory
from official.nlp.modeling import models
from official.nlp.tasks import utils
METRIC_TYPES = frozenset(
['accuracy', 'f1', 'matthews_corrcoef', 'pearson_spearman_corr'])
@dataclasses.dataclass
class ModelConfig(base_config.Config):
"""A classifier/regressor configuration."""
num_classes: int = 0
use_encoder_pooler: bool = False
encoder: encoders.EncoderConfig = dataclasses.field(default_factory=encoders.EncoderConfig)
@dataclasses.dataclass
class SentencePredictionConfig(cfg.TaskConfig):
"""The model config."""
# At most one of `init_checkpoint` and `hub_module_url` can
# be specified.
init_checkpoint: str = ''
init_cls_pooler: bool = False
hub_module_url: str = ''
metric_type: str = 'accuracy'
# Defines the concrete model config at instantiation time.
model: ModelConfig = dataclasses.field(default_factory=ModelConfig)
train_data: cfg.DataConfig = dataclasses.field(default_factory=cfg.DataConfig)
validation_data: cfg.DataConfig = dataclasses.field(default_factory=cfg.DataConfig)
@task_factory.register_task_cls(SentencePredictionConfig)
class SentencePredictionTask(base_task.Task):
"""Task object for sentence_prediction."""
def __init__(self, params: cfg.TaskConfig, logging_dir=None, name=None):
super().__init__(params, logging_dir, name=name)
if params.metric_type not in METRIC_TYPES:
raise ValueError('Invalid metric_type: {}'.format(params.metric_type))
self.metric_type = params.metric_type
if hasattr(params.train_data, 'label_field'):
self.label_field = params.train_data.label_field
else:
self.label_field = 'label_ids'
def build_model(self):
if self.task_config.hub_module_url and self.task_config.init_checkpoint:
raise ValueError('At most one of `hub_module_url` and '
'`init_checkpoint` can be specified.')
if self.task_config.hub_module_url:
encoder_network = utils.get_encoder_from_hub(
self.task_config.hub_module_url)
else:
encoder_network = encoders.build_encoder(self.task_config.model.encoder)
encoder_cfg = self.task_config.model.encoder.get()
if self.task_config.model.encoder.type == 'xlnet':
return models.XLNetClassifier(
network=encoder_network,
num_classes=self.task_config.model.num_classes,
initializer=tf_keras.initializers.RandomNormal(
stddev=encoder_cfg.initializer_range))
else:
return models.BertClassifier(
network=encoder_network,
num_classes=self.task_config.model.num_classes,
initializer=tf_keras.initializers.TruncatedNormal(
stddev=encoder_cfg.initializer_range),
use_encoder_pooler=self.task_config.model.use_encoder_pooler)
def build_losses(self, labels, model_outputs, aux_losses=None) -> tf.Tensor:
label_ids = labels[self.label_field]
if self.task_config.model.num_classes == 1:
loss = tf_keras.losses.mean_squared_error(label_ids, model_outputs)
else:
loss = tf_keras.losses.sparse_categorical_crossentropy(
label_ids, tf.cast(model_outputs, tf.float32), from_logits=True)
if aux_losses:
loss += tf.add_n(aux_losses)
return tf_utils.safe_mean(loss)
def build_inputs(self, params, input_context=None):
"""Returns tf.data.Dataset for sentence_prediction task."""
if params.input_path == 'dummy':
def dummy_data(_):
dummy_ids = tf.zeros((1, params.seq_length), dtype=tf.int32)
x = dict(
input_word_ids=dummy_ids,
input_mask=dummy_ids,
input_type_ids=dummy_ids)
if self.task_config.model.num_classes == 1:
y = tf.zeros((1,), dtype=tf.float32)
else:
y = tf.zeros((1, 1), dtype=tf.int32)
x[self.label_field] = y
return x
dataset = tf.data.Dataset.range(1)
dataset = dataset.repeat()
dataset = dataset.map(
dummy_data, num_parallel_calls=tf.data.experimental.AUTOTUNE)
return dataset
return data_loader_factory.get_data_loader(params).load(input_context)
def build_metrics(self, training=None):
del training
if self.task_config.model.num_classes == 1:
metrics = [tf_keras.metrics.MeanSquaredError()]
elif self.task_config.model.num_classes == 2:
metrics = [
tf_keras.metrics.SparseCategoricalAccuracy(name='cls_accuracy'),
tf_keras.metrics.AUC(name='auc', curve='PR'),
]
else:
metrics = [
tf_keras.metrics.SparseCategoricalAccuracy(name='cls_accuracy'),
]
return metrics
def process_metrics(self, metrics, labels, model_outputs):
for metric in metrics:
if metric.name == 'auc':
# Convert the logit to probability and extract the probability of True..
metric.update_state(
labels[self.label_field],
tf.expand_dims(tf.nn.softmax(model_outputs)[:, 1], axis=1))
if metric.name == 'cls_accuracy':
metric.update_state(labels[self.label_field], model_outputs)
def process_compiled_metrics(self, compiled_metrics, labels, model_outputs):
compiled_metrics.update_state(labels[self.label_field], model_outputs)
def validation_step(self, inputs, model: tf_keras.Model, metrics=None):
features, labels = inputs, inputs
outputs = self.inference_step(features, model)
loss = self.build_losses(
labels=labels, model_outputs=outputs, aux_losses=model.losses)
logs = {self.loss: loss}
if metrics:
self.process_metrics(metrics, labels, outputs)
if model.compiled_metrics:
self.process_compiled_metrics(model.compiled_metrics, labels, outputs)
logs.update({m.name: m.result() for m in metrics or []})
logs.update({m.name: m.result() for m in model.metrics})
if self.metric_type == 'matthews_corrcoef':
logs.update({
'sentence_prediction': # Ensure one prediction along batch dimension.
tf.expand_dims(tf.math.argmax(outputs, axis=1), axis=1),
'labels':
labels[self.label_field],
})
else:
logs.update({
'sentence_prediction': outputs,
'labels': labels[self.label_field],
})
return logs
def aggregate_logs(self, state=None, step_outputs=None):
if self.metric_type == 'accuracy':
return None
if state is None:
state = {'sentence_prediction': [], 'labels': []}
state['sentence_prediction'].append(
np.concatenate([v.numpy() for v in step_outputs['sentence_prediction']],
axis=0))
state['labels'].append(
np.concatenate([v.numpy() for v in step_outputs['labels']], axis=0))
return state
def reduce_aggregated_logs(self, aggregated_logs, global_step=None):
if self.metric_type == 'accuracy':
return None
preds = np.concatenate(aggregated_logs['sentence_prediction'], axis=0)
labels = np.concatenate(aggregated_logs['labels'], axis=0)
if self.metric_type == 'f1':
preds = np.argmax(preds, axis=1)
return {self.metric_type: sklearn_metrics.f1_score(labels, preds)}
elif self.metric_type == 'matthews_corrcoef':
preds = np.reshape(preds, -1)
labels = np.reshape(labels, -1)
return {
self.metric_type: sklearn_metrics.matthews_corrcoef(preds, labels)
}
elif self.metric_type == 'pearson_spearman_corr':
preds = np.reshape(preds, -1)
labels = np.reshape(labels, -1)
pearson_corr = stats.pearsonr(preds, labels)[0]
spearman_corr = stats.spearmanr(preds, labels)[0]
corr_metric = (pearson_corr + spearman_corr) / 2
return {self.metric_type: corr_metric}
def initialize(self, model):
"""Load a pretrained checkpoint (if exists) and then train from iter 0."""
ckpt_dir_or_file = self.task_config.init_checkpoint
logging.info('Trying to load pretrained checkpoint from %s',
ckpt_dir_or_file)
if ckpt_dir_or_file and tf.io.gfile.isdir(ckpt_dir_or_file):
ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file)
if not ckpt_dir_or_file:
logging.info('No checkpoint file found from %s. Will not load.',
ckpt_dir_or_file)
return
pretrain2finetune_mapping = {
'encoder': model.checkpoint_items['encoder'],
}
if self.task_config.init_cls_pooler:
# This option is valid when use_encoder_pooler is false.
pretrain2finetune_mapping[
'next_sentence.pooler_dense'] = model.checkpoint_items[
'sentence_prediction.pooler_dense']
ckpt = tf.train.Checkpoint(**pretrain2finetune_mapping)
status = ckpt.read(ckpt_dir_or_file)
status.expect_partial().assert_existing_objects_matched()
logging.info('Finished loading pretrained checkpoint from %s',
ckpt_dir_or_file)
def predict(task: SentencePredictionTask,
params: cfg.DataConfig,
model: tf_keras.Model,
params_aug: Optional[cfg.DataConfig] = None,
test_time_aug_wgt: float = 0.3) -> List[Union[int, float]]:
"""Predicts on the input data.
Args:
task: A `SentencePredictionTask` object.
params: A `cfg.DataConfig` object.
model: A keras.Model.
params_aug: A `cfg.DataConfig` object for augmented data.
test_time_aug_wgt: Test time augmentation weight. The prediction score will
use (1. - test_time_aug_wgt) original prediction plus test_time_aug_wgt
augmented prediction.
Returns:
A list of predictions with length of `num_examples`. For regression task,
each element in the list is the predicted score; for classification task,
each element is the predicted class id.
"""
def predict_step(inputs):
"""Replicated prediction calculation."""
x = inputs
example_id = x.pop('example_id')
outputs = task.inference_step(x, model)
return dict(example_id=example_id, predictions=outputs)
def aggregate_fn(state, outputs):
"""Concatenates model's outputs."""
if state is None:
state = []
for per_replica_example_id, per_replica_batch_predictions in zip(
outputs['example_id'], outputs['predictions']):
state.extend(zip(per_replica_example_id, per_replica_batch_predictions))
return state
dataset = orbit.utils.make_distributed_dataset(tf.distribute.get_strategy(),
task.build_inputs, params)
outputs = utils.predict(predict_step, aggregate_fn, dataset)
# When running on TPU POD, the order of output cannot be maintained,
# so we need to sort by example_id.
outputs = sorted(outputs, key=lambda x: x[0])
is_regression = task.task_config.model.num_classes == 1
if params_aug is not None:
dataset_aug = orbit.utils.make_distributed_dataset(
tf.distribute.get_strategy(), task.build_inputs, params_aug)
outputs_aug = utils.predict(predict_step, aggregate_fn, dataset_aug)
outputs_aug = sorted(outputs_aug, key=lambda x: x[0])
if is_regression:
return [(1. - test_time_aug_wgt) * x[1] + test_time_aug_wgt * y[1]
for x, y in zip(outputs, outputs_aug)]
else:
return [
tf.argmax(
(1. - test_time_aug_wgt) * x[1] + test_time_aug_wgt * y[1],
axis=-1) for x, y in zip(outputs, outputs_aug)
]
if is_regression:
return [x[1] for x in outputs]
else:
return [tf.argmax(x[1], axis=-1) for x in outputs]
|