File size: 12,648 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Sentence prediction (classification) task."""
import dataclasses
from typing import List, Union, Optional

from absl import logging
import numpy as np
import orbit
from scipy import stats
from sklearn import metrics as sklearn_metrics
import tensorflow as tf, tf_keras

from official.core import base_task
from official.core import config_definitions as cfg
from official.core import task_factory
from official.modeling import tf_utils
from official.modeling.hyperparams import base_config
from official.nlp.configs import encoders
from official.nlp.data import data_loader_factory
from official.nlp.modeling import models
from official.nlp.tasks import utils

METRIC_TYPES = frozenset(
    ['accuracy', 'f1', 'matthews_corrcoef', 'pearson_spearman_corr'])


@dataclasses.dataclass
class ModelConfig(base_config.Config):
  """A classifier/regressor configuration."""
  num_classes: int = 0
  use_encoder_pooler: bool = False
  encoder: encoders.EncoderConfig = dataclasses.field(default_factory=encoders.EncoderConfig)


@dataclasses.dataclass
class SentencePredictionConfig(cfg.TaskConfig):
  """The model config."""
  # At most one of `init_checkpoint` and `hub_module_url` can
  # be specified.
  init_checkpoint: str = ''
  init_cls_pooler: bool = False
  hub_module_url: str = ''
  metric_type: str = 'accuracy'
  # Defines the concrete model config at instantiation time.
  model: ModelConfig = dataclasses.field(default_factory=ModelConfig)
  train_data: cfg.DataConfig = dataclasses.field(default_factory=cfg.DataConfig)
  validation_data: cfg.DataConfig = dataclasses.field(default_factory=cfg.DataConfig)


@task_factory.register_task_cls(SentencePredictionConfig)
class SentencePredictionTask(base_task.Task):
  """Task object for sentence_prediction."""

  def __init__(self, params: cfg.TaskConfig, logging_dir=None, name=None):
    super().__init__(params, logging_dir, name=name)
    if params.metric_type not in METRIC_TYPES:
      raise ValueError('Invalid metric_type: {}'.format(params.metric_type))
    self.metric_type = params.metric_type
    if hasattr(params.train_data, 'label_field'):
      self.label_field = params.train_data.label_field
    else:
      self.label_field = 'label_ids'

  def build_model(self):
    if self.task_config.hub_module_url and self.task_config.init_checkpoint:
      raise ValueError('At most one of `hub_module_url` and '
                       '`init_checkpoint` can be specified.')
    if self.task_config.hub_module_url:
      encoder_network = utils.get_encoder_from_hub(
          self.task_config.hub_module_url)
    else:
      encoder_network = encoders.build_encoder(self.task_config.model.encoder)
    encoder_cfg = self.task_config.model.encoder.get()
    if self.task_config.model.encoder.type == 'xlnet':
      return models.XLNetClassifier(
          network=encoder_network,
          num_classes=self.task_config.model.num_classes,
          initializer=tf_keras.initializers.RandomNormal(
              stddev=encoder_cfg.initializer_range))
    else:
      return models.BertClassifier(
          network=encoder_network,
          num_classes=self.task_config.model.num_classes,
          initializer=tf_keras.initializers.TruncatedNormal(
              stddev=encoder_cfg.initializer_range),
          use_encoder_pooler=self.task_config.model.use_encoder_pooler)

  def build_losses(self, labels, model_outputs, aux_losses=None) -> tf.Tensor:
    label_ids = labels[self.label_field]
    if self.task_config.model.num_classes == 1:
      loss = tf_keras.losses.mean_squared_error(label_ids, model_outputs)
    else:
      loss = tf_keras.losses.sparse_categorical_crossentropy(
          label_ids, tf.cast(model_outputs, tf.float32), from_logits=True)

    if aux_losses:
      loss += tf.add_n(aux_losses)
    return tf_utils.safe_mean(loss)

  def build_inputs(self, params, input_context=None):
    """Returns tf.data.Dataset for sentence_prediction task."""
    if params.input_path == 'dummy':

      def dummy_data(_):
        dummy_ids = tf.zeros((1, params.seq_length), dtype=tf.int32)
        x = dict(
            input_word_ids=dummy_ids,
            input_mask=dummy_ids,
            input_type_ids=dummy_ids)

        if self.task_config.model.num_classes == 1:
          y = tf.zeros((1,), dtype=tf.float32)
        else:
          y = tf.zeros((1, 1), dtype=tf.int32)
        x[self.label_field] = y
        return x

      dataset = tf.data.Dataset.range(1)
      dataset = dataset.repeat()
      dataset = dataset.map(
          dummy_data, num_parallel_calls=tf.data.experimental.AUTOTUNE)
      return dataset

    return data_loader_factory.get_data_loader(params).load(input_context)

  def build_metrics(self, training=None):
    del training
    if self.task_config.model.num_classes == 1:
      metrics = [tf_keras.metrics.MeanSquaredError()]
    elif self.task_config.model.num_classes == 2:
      metrics = [
          tf_keras.metrics.SparseCategoricalAccuracy(name='cls_accuracy'),
          tf_keras.metrics.AUC(name='auc', curve='PR'),
      ]
    else:
      metrics = [
          tf_keras.metrics.SparseCategoricalAccuracy(name='cls_accuracy'),
      ]
    return metrics

  def process_metrics(self, metrics, labels, model_outputs):
    for metric in metrics:
      if metric.name == 'auc':
        # Convert the logit to probability and extract the probability of True..
        metric.update_state(
            labels[self.label_field],
            tf.expand_dims(tf.nn.softmax(model_outputs)[:, 1], axis=1))
      if metric.name == 'cls_accuracy':
        metric.update_state(labels[self.label_field], model_outputs)

  def process_compiled_metrics(self, compiled_metrics, labels, model_outputs):
    compiled_metrics.update_state(labels[self.label_field], model_outputs)

  def validation_step(self, inputs, model: tf_keras.Model, metrics=None):
    features, labels = inputs, inputs
    outputs = self.inference_step(features, model)
    loss = self.build_losses(
        labels=labels, model_outputs=outputs, aux_losses=model.losses)
    logs = {self.loss: loss}
    if metrics:
      self.process_metrics(metrics, labels, outputs)
    if model.compiled_metrics:
      self.process_compiled_metrics(model.compiled_metrics, labels, outputs)
      logs.update({m.name: m.result() for m in metrics or []})
      logs.update({m.name: m.result() for m in model.metrics})
    if self.metric_type == 'matthews_corrcoef':
      logs.update({
          'sentence_prediction':  # Ensure one prediction along batch dimension.
              tf.expand_dims(tf.math.argmax(outputs, axis=1), axis=1),
          'labels':
              labels[self.label_field],
      })
    else:
      logs.update({
          'sentence_prediction': outputs,
          'labels': labels[self.label_field],
      })
    return logs

  def aggregate_logs(self, state=None, step_outputs=None):
    if self.metric_type == 'accuracy':
      return None
    if state is None:
      state = {'sentence_prediction': [], 'labels': []}
    state['sentence_prediction'].append(
        np.concatenate([v.numpy() for v in step_outputs['sentence_prediction']],
                       axis=0))
    state['labels'].append(
        np.concatenate([v.numpy() for v in step_outputs['labels']], axis=0))
    return state

  def reduce_aggregated_logs(self, aggregated_logs, global_step=None):
    if self.metric_type == 'accuracy':
      return None

    preds = np.concatenate(aggregated_logs['sentence_prediction'], axis=0)
    labels = np.concatenate(aggregated_logs['labels'], axis=0)
    if self.metric_type == 'f1':
      preds = np.argmax(preds, axis=1)
      return {self.metric_type: sklearn_metrics.f1_score(labels, preds)}
    elif self.metric_type == 'matthews_corrcoef':
      preds = np.reshape(preds, -1)
      labels = np.reshape(labels, -1)
      return {
          self.metric_type: sklearn_metrics.matthews_corrcoef(preds, labels)
      }
    elif self.metric_type == 'pearson_spearman_corr':
      preds = np.reshape(preds, -1)
      labels = np.reshape(labels, -1)
      pearson_corr = stats.pearsonr(preds, labels)[0]
      spearman_corr = stats.spearmanr(preds, labels)[0]
      corr_metric = (pearson_corr + spearman_corr) / 2
      return {self.metric_type: corr_metric}

  def initialize(self, model):
    """Load a pretrained checkpoint (if exists) and then train from iter 0."""
    ckpt_dir_or_file = self.task_config.init_checkpoint
    logging.info('Trying to load pretrained checkpoint from %s',
                 ckpt_dir_or_file)
    if ckpt_dir_or_file and tf.io.gfile.isdir(ckpt_dir_or_file):
      ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file)
    if not ckpt_dir_or_file:
      logging.info('No checkpoint file found from %s. Will not load.',
                   ckpt_dir_or_file)
      return

    pretrain2finetune_mapping = {
        'encoder': model.checkpoint_items['encoder'],
    }
    if self.task_config.init_cls_pooler:
      # This option is valid when use_encoder_pooler is false.
      pretrain2finetune_mapping[
          'next_sentence.pooler_dense'] = model.checkpoint_items[
              'sentence_prediction.pooler_dense']
    ckpt = tf.train.Checkpoint(**pretrain2finetune_mapping)
    status = ckpt.read(ckpt_dir_or_file)
    status.expect_partial().assert_existing_objects_matched()
    logging.info('Finished loading pretrained checkpoint from %s',
                 ckpt_dir_or_file)


def predict(task: SentencePredictionTask,
            params: cfg.DataConfig,
            model: tf_keras.Model,
            params_aug: Optional[cfg.DataConfig] = None,
            test_time_aug_wgt: float = 0.3) -> List[Union[int, float]]:
  """Predicts on the input data.

  Args:
    task: A `SentencePredictionTask` object.
    params: A `cfg.DataConfig` object.
    model: A keras.Model.
    params_aug: A `cfg.DataConfig` object for augmented data.
    test_time_aug_wgt: Test time augmentation weight. The prediction score will
      use (1. - test_time_aug_wgt) original prediction plus test_time_aug_wgt
      augmented prediction.

  Returns:
    A list of predictions with length of `num_examples`. For regression task,
      each element in the list is the predicted score; for classification task,
      each element is the predicted class id.
  """

  def predict_step(inputs):
    """Replicated prediction calculation."""
    x = inputs
    example_id = x.pop('example_id')
    outputs = task.inference_step(x, model)
    return dict(example_id=example_id, predictions=outputs)

  def aggregate_fn(state, outputs):
    """Concatenates model's outputs."""
    if state is None:
      state = []

    for per_replica_example_id, per_replica_batch_predictions in zip(
        outputs['example_id'], outputs['predictions']):
      state.extend(zip(per_replica_example_id, per_replica_batch_predictions))
    return state

  dataset = orbit.utils.make_distributed_dataset(tf.distribute.get_strategy(),
                                                 task.build_inputs, params)
  outputs = utils.predict(predict_step, aggregate_fn, dataset)

  # When running on TPU POD, the order of output cannot be maintained,
  # so we need to sort by example_id.
  outputs = sorted(outputs, key=lambda x: x[0])
  is_regression = task.task_config.model.num_classes == 1
  if params_aug is not None:
    dataset_aug = orbit.utils.make_distributed_dataset(
        tf.distribute.get_strategy(), task.build_inputs, params_aug)
    outputs_aug = utils.predict(predict_step, aggregate_fn, dataset_aug)
    outputs_aug = sorted(outputs_aug, key=lambda x: x[0])
    if is_regression:
      return [(1. - test_time_aug_wgt) * x[1] + test_time_aug_wgt * y[1]
              for x, y in zip(outputs, outputs_aug)]
    else:
      return [
          tf.argmax(
              (1. - test_time_aug_wgt) * x[1] + test_time_aug_wgt * y[1],
              axis=-1) for x, y in zip(outputs, outputs_aug)
      ]
  if is_regression:
    return [x[1] for x in outputs]
  else:
    return [tf.argmax(x[1], axis=-1) for x in outputs]