Spaces:
Runtime error
Runtime error
File size: 19,850 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""NCF framework to train and evaluate the NeuMF model.
The NeuMF model assembles both MF and MLP models under the NCF framework. Check
`neumf_model.py` for more details about the models.
"""
import json
import os
# pylint: disable=g-bad-import-order
from absl import app
from absl import flags
from absl import logging
import tensorflow as tf, tf_keras
# pylint: enable=g-bad-import-order
from official.common import distribute_utils
from official.recommendation import constants as rconst
from official.recommendation import movielens
from official.recommendation import ncf_common
from official.recommendation import ncf_input_pipeline
from official.recommendation import neumf_model
from official.utils.flags import core as flags_core
from official.utils.misc import keras_utils
from official.utils.misc import model_helpers
FLAGS = flags.FLAGS
def metric_fn(logits, dup_mask, match_mlperf):
dup_mask = tf.cast(dup_mask, tf.float32)
logits = tf.slice(logits, [0, 1], [-1, -1])
in_top_k, _, metric_weights, _ = neumf_model.compute_top_k_and_ndcg(
logits, dup_mask, match_mlperf)
metric_weights = tf.cast(metric_weights, tf.float32)
return in_top_k, metric_weights
class MetricLayer(tf_keras.layers.Layer):
"""Custom layer of metrics for NCF model."""
def __init__(self, match_mlperf):
super(MetricLayer, self).__init__()
self.match_mlperf = match_mlperf
def get_config(self):
return {"match_mlperf": self.match_mlperf}
@classmethod
def from_config(cls, config, custom_objects=None):
return cls(**config)
def call(self, inputs, training=False):
logits, dup_mask = inputs
if training:
hr_sum = 0.0
hr_count = 0.0
else:
metric, metric_weights = metric_fn(logits, dup_mask, self.match_mlperf)
hr_sum = tf.reduce_sum(metric * metric_weights)
hr_count = tf.reduce_sum(metric_weights)
self.add_metric(hr_sum, name="hr_sum", aggregation="mean")
self.add_metric(hr_count, name="hr_count", aggregation="mean")
return logits
class LossLayer(tf_keras.layers.Layer):
"""Pass-through loss layer for NCF model."""
def __init__(self, loss_normalization_factor):
# The loss may overflow in float16, so we use float32 instead.
super(LossLayer, self).__init__(dtype="float32")
self.loss_normalization_factor = loss_normalization_factor
self.loss = tf_keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction="sum")
def get_config(self):
return {"loss_normalization_factor": self.loss_normalization_factor}
@classmethod
def from_config(cls, config, custom_objects=None):
return cls(**config)
def call(self, inputs):
logits, labels, valid_pt_mask_input = inputs
loss = self.loss(
y_true=labels, y_pred=logits, sample_weight=valid_pt_mask_input)
loss = loss * (1.0 / self.loss_normalization_factor)
self.add_loss(loss)
return logits
class IncrementEpochCallback(tf_keras.callbacks.Callback):
"""A callback to increase the requested epoch for the data producer.
The reason why we need this is because we can only buffer a limited amount of
data. So we keep a moving window to represent the buffer. This is to move the
one of the window's boundaries for each epoch.
"""
def __init__(self, producer):
self._producer = producer
def on_epoch_begin(self, epoch, logs=None):
self._producer.increment_request_epoch()
class CustomEarlyStopping(tf_keras.callbacks.Callback):
"""Stop training has reached a desired hit rate."""
def __init__(self, monitor, desired_value):
super(CustomEarlyStopping, self).__init__()
self.monitor = monitor
self.desired = desired_value
self.stopped_epoch = 0
def on_epoch_end(self, epoch, logs=None):
current = self.get_monitor_value(logs)
if current and current >= self.desired:
self.stopped_epoch = epoch
self.model.stop_training = True
def on_train_end(self, logs=None):
if self.stopped_epoch > 0:
print("Epoch %05d: early stopping" % (self.stopped_epoch + 1))
def get_monitor_value(self, logs):
logs = logs or {}
monitor_value = logs.get(self.monitor)
if monitor_value is None:
logging.warning(
"Early stopping conditioned on metric `%s` "
"which is not available. Available metrics are: %s", self.monitor,
",".join(list(logs.keys())))
return monitor_value
def _get_keras_model(params):
"""Constructs and returns the model."""
batch_size = params["batch_size"]
user_input = tf_keras.layers.Input(
shape=(1,), name=movielens.USER_COLUMN, dtype=tf.int32)
item_input = tf_keras.layers.Input(
shape=(1,), name=movielens.ITEM_COLUMN, dtype=tf.int32)
valid_pt_mask_input = tf_keras.layers.Input(
shape=(1,), name=rconst.VALID_POINT_MASK, dtype=tf.bool)
dup_mask_input = tf_keras.layers.Input(
shape=(1,), name=rconst.DUPLICATE_MASK, dtype=tf.int32)
label_input = tf_keras.layers.Input(
shape=(1,), name=rconst.TRAIN_LABEL_KEY, dtype=tf.bool)
base_model = neumf_model.construct_model(user_input, item_input, params)
logits = base_model.output
zeros = tf_keras.layers.Lambda(lambda x: x * 0)(logits)
softmax_logits = tf_keras.layers.concatenate([zeros, logits], axis=-1)
# Custom training loop calculates loss and metric as a part of
# training/evaluation step function.
if not params["keras_use_ctl"]:
softmax_logits = MetricLayer(
params["match_mlperf"])([softmax_logits, dup_mask_input])
# TODO(b/134744680): Use model.add_loss() instead once the API is well
# supported.
softmax_logits = LossLayer(batch_size)(
[softmax_logits, label_input, valid_pt_mask_input])
keras_model = tf_keras.Model(
inputs={
movielens.USER_COLUMN: user_input,
movielens.ITEM_COLUMN: item_input,
rconst.VALID_POINT_MASK: valid_pt_mask_input,
rconst.DUPLICATE_MASK: dup_mask_input,
rconst.TRAIN_LABEL_KEY: label_input
},
outputs=softmax_logits)
keras_model.summary()
return keras_model
def run_ncf(_):
"""Run NCF training and eval with Keras."""
keras_utils.set_session_config(enable_xla=FLAGS.enable_xla)
if FLAGS.seed is not None:
print("Setting tf seed")
tf.random.set_seed(FLAGS.seed)
model_helpers.apply_clean(FLAGS)
if FLAGS.dtype == "fp16" and FLAGS.fp16_implementation == "keras":
tf_keras.mixed_precision.set_global_policy("mixed_float16")
strategy = distribute_utils.get_distribution_strategy(
distribution_strategy=FLAGS.distribution_strategy,
num_gpus=FLAGS.num_gpus,
tpu_address=FLAGS.tpu)
params = ncf_common.parse_flags(FLAGS)
params["distribute_strategy"] = strategy
params["use_tpu"] = (FLAGS.distribution_strategy == "tpu")
if params["use_tpu"] and not params["keras_use_ctl"]:
logging.error("Custom training loop must be used when using TPUStrategy.")
return
batch_size = params["batch_size"]
time_callback = keras_utils.TimeHistory(batch_size, FLAGS.log_steps)
callbacks = [time_callback]
producer, input_meta_data = None, None
generate_input_online = params["train_dataset_path"] is None
if generate_input_online:
# Start data producing thread.
num_users, num_items, _, _, producer = ncf_common.get_inputs(params)
producer.start()
per_epoch_callback = IncrementEpochCallback(producer)
callbacks.append(per_epoch_callback)
else:
assert params["eval_dataset_path"] and params["input_meta_data_path"]
with tf.io.gfile.GFile(params["input_meta_data_path"], "rb") as reader:
input_meta_data = json.loads(reader.read().decode("utf-8"))
num_users = input_meta_data["num_users"]
num_items = input_meta_data["num_items"]
params["num_users"], params["num_items"] = num_users, num_items
if FLAGS.early_stopping:
early_stopping_callback = CustomEarlyStopping(
"val_HR_METRIC", desired_value=FLAGS.hr_threshold)
callbacks.append(early_stopping_callback)
(train_input_dataset, eval_input_dataset, num_train_steps,
num_eval_steps) = ncf_input_pipeline.create_ncf_input_data(
params, producer, input_meta_data, strategy)
steps_per_epoch = None if generate_input_online else num_train_steps
with distribute_utils.get_strategy_scope(strategy):
keras_model = _get_keras_model(params)
optimizer = tf_keras.optimizers.Adam(
learning_rate=params["learning_rate"],
beta_1=params["beta1"],
beta_2=params["beta2"],
epsilon=params["epsilon"])
if FLAGS.fp16_implementation == "graph_rewrite":
optimizer = \
tf.compat.v1.train.experimental.enable_mixed_precision_graph_rewrite(
optimizer,
loss_scale=flags_core.get_loss_scale(FLAGS,
default_for_fp16="dynamic"))
elif FLAGS.dtype == "fp16":
loss_scale = flags_core.get_loss_scale(FLAGS, default_for_fp16="dynamic")
# Note Model.compile automatically wraps the optimizer with a
# LossScaleOptimizer using dynamic loss scaling. We explicitly wrap it
# here for the case where a custom training loop or fixed loss scale is
# used.
if loss_scale == "dynamic":
optimizer = tf_keras.mixed_precision.LossScaleOptimizer(optimizer)
else:
optimizer = tf_keras.mixed_precision.LossScaleOptimizer(
optimizer, dynamic=False, initial_scale=loss_scale)
if params["keras_use_ctl"]:
train_loss, eval_results = run_ncf_custom_training(
params,
strategy,
keras_model,
optimizer,
callbacks,
train_input_dataset,
eval_input_dataset,
num_train_steps,
num_eval_steps,
generate_input_online=generate_input_online)
else:
keras_model.compile(optimizer=optimizer, run_eagerly=FLAGS.run_eagerly)
if not FLAGS.ml_perf:
# Create Tensorboard summary and checkpoint callbacks.
summary_dir = os.path.join(FLAGS.model_dir, "summaries")
summary_callback = tf_keras.callbacks.TensorBoard(
summary_dir, profile_batch=0)
checkpoint_path = os.path.join(FLAGS.model_dir, "checkpoint")
checkpoint_callback = tf_keras.callbacks.ModelCheckpoint(
checkpoint_path, save_weights_only=True)
callbacks += [summary_callback, checkpoint_callback]
history = keras_model.fit(
train_input_dataset,
epochs=FLAGS.train_epochs,
steps_per_epoch=steps_per_epoch,
callbacks=callbacks,
validation_data=eval_input_dataset,
validation_steps=num_eval_steps,
verbose=2)
logging.info("Training done. Start evaluating")
eval_loss_and_metrics = keras_model.evaluate(
eval_input_dataset, steps=num_eval_steps, verbose=2)
logging.info("Keras evaluation is done.")
# Keras evaluate() API returns scalar loss and metric values from
# evaluation as a list. Here, the returned list would contain
# [evaluation loss, hr sum, hr count].
eval_hit_rate = eval_loss_and_metrics[1] / eval_loss_and_metrics[2]
# Format evaluation result into [eval loss, eval hit accuracy].
eval_results = [eval_loss_and_metrics[0], eval_hit_rate]
if history and history.history:
train_history = history.history
train_loss = train_history["loss"][-1]
stats = build_stats(train_loss, eval_results, time_callback)
return stats
def run_ncf_custom_training(params,
strategy,
keras_model,
optimizer,
callbacks,
train_input_dataset,
eval_input_dataset,
num_train_steps,
num_eval_steps,
generate_input_online=True):
"""Runs custom training loop.
Args:
params: Dictionary containing training parameters.
strategy: Distribution strategy to be used for distributed training.
keras_model: Model used for training.
optimizer: Optimizer used for training.
callbacks: Callbacks to be invoked between batches/epochs.
train_input_dataset: tf.data.Dataset used for training.
eval_input_dataset: tf.data.Dataset used for evaluation.
num_train_steps: Total number of steps to run for training.
num_eval_steps: Total number of steps to run for evaluation.
generate_input_online: Whether input data was generated by data producer.
When data is generated by data producer, then train dataset must be
re-initialized after every epoch.
Returns:
A tuple of train loss and a list of training and evaluation results.
"""
loss_object = tf_keras.losses.SparseCategoricalCrossentropy(
reduction="sum", from_logits=True)
train_input_iterator = iter(
strategy.experimental_distribute_dataset(train_input_dataset))
def train_step(train_iterator):
"""Called once per step to train the model."""
def step_fn(features):
"""Computes loss and applied gradient per replica."""
with tf.GradientTape() as tape:
softmax_logits = keras_model(features)
# The loss can overflow in float16, so we cast to float32.
softmax_logits = tf.cast(softmax_logits, "float32")
labels = features[rconst.TRAIN_LABEL_KEY]
loss = loss_object(
labels,
softmax_logits,
sample_weight=features[rconst.VALID_POINT_MASK])
loss *= (1.0 / params["batch_size"])
if FLAGS.dtype == "fp16":
loss = optimizer.get_scaled_loss(loss)
grads = tape.gradient(loss, keras_model.trainable_variables)
if FLAGS.dtype == "fp16":
grads = optimizer.get_unscaled_gradients(grads)
# Converting gradients to dense form helps in perf on GPU for NCF
grads = neumf_model.sparse_to_dense_grads(
list(zip(grads, keras_model.trainable_variables)))
optimizer.apply_gradients(grads)
return loss
per_replica_losses = strategy.run(step_fn, args=(next(train_iterator),))
mean_loss = strategy.reduce(
tf.distribute.ReduceOp.SUM, per_replica_losses, axis=None)
return mean_loss
def eval_step(eval_iterator):
"""Called once per eval step to compute eval metrics."""
def step_fn(features):
"""Computes eval metrics per replica."""
softmax_logits = keras_model(features)
in_top_k, metric_weights = metric_fn(softmax_logits,
features[rconst.DUPLICATE_MASK],
params["match_mlperf"])
hr_sum = tf.reduce_sum(in_top_k * metric_weights)
hr_count = tf.reduce_sum(metric_weights)
return hr_sum, hr_count
per_replica_hr_sum, per_replica_hr_count = (
strategy.run(step_fn, args=(next(eval_iterator),)))
hr_sum = strategy.reduce(
tf.distribute.ReduceOp.SUM, per_replica_hr_sum, axis=None)
hr_count = strategy.reduce(
tf.distribute.ReduceOp.SUM, per_replica_hr_count, axis=None)
return hr_sum, hr_count
if not FLAGS.run_eagerly:
train_step = tf.function(train_step)
eval_step = tf.function(eval_step)
for callback in callbacks:
callback.on_train_begin()
# Not writing tensorboard summaries if running in MLPerf.
if FLAGS.ml_perf:
eval_summary_writer, train_summary_writer = None, None
else:
summary_dir = os.path.join(FLAGS.model_dir, "summaries")
eval_summary_writer = tf.summary.create_file_writer(
os.path.join(summary_dir, "eval"))
train_summary_writer = tf.summary.create_file_writer(
os.path.join(summary_dir, "train"))
train_loss = 0
for epoch in range(FLAGS.train_epochs):
for cb in callbacks:
cb.on_epoch_begin(epoch)
# As NCF dataset is sampled with randomness, not repeating
# data elements in each epoch has significant impact on
# convergence. As so, offline-generated TF record files
# contains all epoch worth of data. Thus we do not need
# to initialize dataset when reading from tf record files.
if generate_input_online:
train_input_iterator = iter(
strategy.experimental_distribute_dataset(train_input_dataset))
train_loss = 0
for step in range(num_train_steps):
current_step = step + epoch * num_train_steps
for c in callbacks:
c.on_batch_begin(current_step)
train_loss += train_step(train_input_iterator)
# Write train loss once in every 1000 steps.
if train_summary_writer and step % 1000 == 0:
with train_summary_writer.as_default():
tf.summary.scalar(
"training_loss", train_loss / (step + 1), step=current_step)
for c in callbacks:
c.on_batch_end(current_step)
train_loss /= num_train_steps
logging.info("Done training epoch %s, epoch loss=%.3f", epoch + 1,
train_loss)
eval_input_iterator = iter(
strategy.experimental_distribute_dataset(eval_input_dataset))
hr_sum = 0.0
hr_count = 0.0
for _ in range(num_eval_steps):
step_hr_sum, step_hr_count = eval_step(eval_input_iterator)
hr_sum += step_hr_sum
hr_count += step_hr_count
logging.info("Done eval epoch %s, hit_rate=%.3f", epoch + 1,
hr_sum / hr_count)
if eval_summary_writer:
with eval_summary_writer.as_default():
tf.summary.scalar("hit_rate", hr_sum / hr_count, step=current_step)
if (FLAGS.early_stopping and
float(hr_sum / hr_count) > params["hr_threshold"]):
break
for c in callbacks:
c.on_train_end()
# Saving the model at the end of training.
if not FLAGS.ml_perf:
checkpoint = tf.train.Checkpoint(model=keras_model, optimizer=optimizer)
checkpoint_path = os.path.join(FLAGS.model_dir, "ctl_checkpoint")
checkpoint.save(checkpoint_path)
logging.info("Saving model as TF checkpoint: %s", checkpoint_path)
return train_loss, [None, hr_sum / hr_count]
def build_stats(loss, eval_result, time_callback):
"""Normalizes and returns dictionary of stats.
Args:
loss: The final loss at training time.
eval_result: Output of the eval step. Assumes first value is eval_loss and
second value is accuracy_top_1.
time_callback: Time tracking callback likely used during keras.fit.
Returns:
Dictionary of normalized results.
"""
stats = {}
if loss:
stats["loss"] = loss
if eval_result:
stats["eval_loss"] = eval_result[0]
stats["eval_hit_rate"] = eval_result[1]
if time_callback:
timestamp_log = time_callback.timestamp_log
stats["step_timestamp_log"] = timestamp_log
stats["train_finish_time"] = time_callback.train_finish_time
if len(timestamp_log) > 1:
stats["avg_exp_per_second"] = (
time_callback.batch_size * time_callback.log_steps *
(len(time_callback.timestamp_log) - 1) /
(timestamp_log[-1].timestamp - timestamp_log[0].timestamp))
return stats
def main(_):
logging.info("Result is %s", run_ncf(FLAGS))
if __name__ == "__main__":
ncf_common.define_ncf_flags()
app.run(main)
|