File size: 3,312 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Mock task for testing."""

import dataclasses

import numpy as np
import tensorflow as tf, tf_keras

from official.core import base_task
from official.core import config_definitions as cfg
from official.core import exp_factory
from official.modeling.hyperparams import base_config


class MockModel(tf_keras.Model):

  def __init__(self, network):
    super().__init__()
    self.network = network

  def call(self, inputs):  # pytype: disable=signature-mismatch  # overriding-parameter-count-checks
    outputs = self.network(inputs)
    self.add_loss(tf.reduce_mean(outputs))
    return outputs


@dataclasses.dataclass
class MockTaskConfig(cfg.TaskConfig):
  pass


@base_config.bind(MockTaskConfig)
class MockTask(base_task.Task):
  """Mock task object for testing."""

  def __init__(self, params=None, logging_dir=None, name=None):
    super().__init__(params=params, logging_dir=logging_dir, name=name)

  def build_model(self, *arg, **kwargs):
    inputs = tf_keras.layers.Input(shape=(2,), name="random", dtype=tf.float32)
    outputs = tf_keras.layers.Dense(
        1, bias_initializer=tf_keras.initializers.Ones(), name="dense_0")(
            inputs)
    network = tf_keras.Model(inputs=inputs, outputs=outputs)
    return MockModel(network)

  def build_metrics(self, training: bool = True):
    del training
    return [tf_keras.metrics.Accuracy(name="acc")]

  def validation_step(self, inputs, model: tf_keras.Model, metrics=None):
    logs = super().validation_step(inputs, model, metrics)
    logs["counter"] = tf.constant(1, dtype=tf.float32)
    return logs

  def build_inputs(self, params):

    def generate_data(_):
      x = tf.zeros(shape=(2,), dtype=tf.float32)
      label = tf.zeros([1], dtype=tf.int32)
      return x, label

    dataset = tf.data.Dataset.range(1)
    dataset = dataset.repeat()
    dataset = dataset.map(
        generate_data, num_parallel_calls=tf.data.experimental.AUTOTUNE)
    return dataset.prefetch(buffer_size=1).batch(2, drop_remainder=True)

  def aggregate_logs(self, state, step_outputs):
    if state is None:
      state = {}
    for key, value in step_outputs.items():
      if key not in state:
        state[key] = []
      state[key].append(
          np.concatenate([np.expand_dims(v.numpy(), axis=0) for v in value]))
    return state

  def reduce_aggregated_logs(self, aggregated_logs, global_step=None):
    for k, v in aggregated_logs.items():
      aggregated_logs[k] = np.sum(np.stack(v, axis=0))
    return aggregated_logs


@exp_factory.register_config_factory("mock")
def mock_experiment() -> cfg.ExperimentConfig:
  config = cfg.ExperimentConfig(
      task=MockTaskConfig(), trainer=cfg.TrainerConfig())
  return config