Spaces:
Runtime error
Runtime error
File size: 21,477 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
# TF-Vision Model Garden
⚠️ Disclaimer: Checkpoints are based on training with publicly available
datasets. Some datasets contain limitations, including non-commercial use
limitations. Please review the terms and conditions made available by third parties
before using the datasets provided. Checkpoints are licensed under
[Apache 2.0](https://github.com/tensorflow/models/blob/master/LICENSE).
⚠️ Disclaimer: Datasets hyperlinked from this page are not owned or distributed
by Google. Such datasets are made available by third parties. Please review the
terms and conditions made available by the third parties before using the data.
## Table of Contents
- [Introduction](#introduction)
- [Image Classification](#image-classification)
* [ResNet models trained with vanilla settings](#resnet-models-trained-with-vanilla-settings)
* [ResNet-RS models trained with various settings](#resnet-rs-models-trained-with-various-settings)
* [Vision Transformer (ViT)](#vision-transformer-ViT)
- [Object Detection and Instance Segmentation](#object-detection-and-instance-segmentation)
* [Common Settings and Notes](#Common-Settings-and-Notes)
- [COCO Object Detection Baselines](#COCO-Object-Detection-Baselines)
* [RetinaNet (ImageNet pretrained)](#RetinaNet-ImageNet-pretrained)
* [RetinaNet (Trained from scratch)](#RetinaNet-Trained-from-scratch)
* [Mobile-size RetinaNet (Trained from scratch)](#Mobile-size-RetinaNet-Trained-from-scratch))
* [YOLOv7 (Trained from scratch)](#yolov7-trained-from-scratch)
- [Instance Segmentation Baselines](#Instance-Segmentation-Baselines)
* [Mask R-CNN (Trained from scratch)](#Mask-R-CNN-Trained-from-scratch)
* [Cascade RCNN-RS (Trained from scratch)](#Cascade-RCNN-RS-Trained-from-scratch)
- [Semantic Segmentation](#semantic-segmentation)
* [PASCAL-VOC](#PASCAL-VOC)
* [CITYSCAPES](#CITYSCAPES)
- [Video Classification](#video-classification)
* [Common Settings and Notes](#Common-Settings-and-Notes)
* [Kinetics-400 Action Recognition Baselines](#Kinetics-400-Action-Recognition-Baselines)
* [Kinetics-600 Action Recognition Baselines](#Kinetics-600-Action-Recognition-Baselines)
## Introduction
TF-Vision modeling library for computer vision provides a collection of
baselines and checkpoints for image classification, object detection, and
segmentation.
## Image Classification
### ResNet models trained with vanilla settings
<details>
* Models are trained from scratch with batch size 4096 and 1.6 initial learning
rate.
* Linear warmup is applied for the first 5 epochs.
* Models trained with l2 weight regularization and ReLU activation.
| Model | Resolution | Epochs | Top-1 | Top-5 | Download |
| ------------ |:-------------:|--------:|--------:|--------:|---------:|
| ResNet-50 | 224x224 | 90 | 76.1 | 92.9 | [config](https://github.com/tensorflow/models/blob/master/official/vision/configs/experiments/image_classification/imagenet_resnet50_tpu.yaml) |
| ResNet-50 | 224x224 | 200 | 77.1 | 93.5 | [config](https://github.com/tensorflow/models/blob/master/official/vision/configs/experiments/image_classification/imagenet_resnet50_tpu.yaml) \| [ckpt](https://storage.googleapis.com/tf_model_garden/vision/resnet/resnet-50-i224.tar.gz) |
| ResNet-101 | 224x224 | 200 | 78.3 | 94.2 | [config](https://github.com/tensorflow/models/blob/master/official/vision/configs/experiments/image_classification/imagenet_resnet101_tpu.yaml) \| [ckpt](https://storage.googleapis.com/tf_model_garden/vision/resnet/resnet-101-i224.tar.gz) |
| ResNet-152 | 224x224 | 200 | 78.7 | 94.3 | [config](https://github.com/tensorflow/models/blob/master/official/vision/configs/experiments/image_classification/imagenet_resnet152_tpu.yaml) \| [ckpt](https://storage.googleapis.com/tf_model_garden/vision/resnet/resnet-152-i224.tar.gz) |
</details>
### ResNet-RS models trained with various settings
<details>
We support state-of-the-art [ResNet-RS](https://arxiv.org/abs/2103.07579) image
classification models with features:
* ResNet-RS architectural changes and Swish activation. (Note that ResNet-RS
adopts ReLU activation in the paper.)
* Regularization methods including Random Augment, 4e-5 weight decay, stochastic
depth, label smoothing and dropout.
* New training methods including a 350-epoch schedule, cosine learning rate and
EMA.
* Configs are in this [directory](https://github.com/tensorflow/models/blob/master/official/vision/configs/experiments/image_classification).
| Model | Resolution | Params (M) | Top-1 | Top-5 | Download |
| --------- | :--------: | ---------: | ----: | ----: | --------:|
| ResNet-RS-50 | 160x160 | 35.7 | 79.1 | 94.5 | [config](https://github.com/tensorflow/models/blob/master/official/vision/configs/experiments/image_classification/imagenet_resnetrs50_i160.yaml) \| [ckpt](https://storage.googleapis.com/tf_model_garden/vision/resnet-rs/resnet-rs-50-i160.tar.gz) |
| ResNet-RS-101 | 160x160 | 63.7 | 80.2 | 94.9 | [config](https://github.com/tensorflow/models/blob/master/official/vision/configs/experiments/image_classification/imagenet_resnetrs101_i160.yaml) \| [ckpt](https://storage.googleapis.com/tf_model_garden/vision/resnet-rs/resnet-rs-101-i160.tar.gz) |
| ResNet-RS-101 | 192x192 | 63.7 | 81.3 | 95.6 | [config](https://github.com/tensorflow/models/blob/master/official/vision/configs/experiments/image_classification/imagenet_resnetrs101_i192.yaml) \| [ckpt](https://storage.googleapis.com/tf_model_garden/vision/resnet-rs/resnet-rs-101-i192.tar.gz) |
| ResNet-RS-152 | 192x192 | 86.8 | 81.9 | 95.8 | [config](https://github.com/tensorflow/models/blob/master/official/vision/configs/experiments/image_classification/imagenet_resnetrs152_i192.yaml) \| [ckpt](https://storage.googleapis.com/tf_model_garden/vision/resnet-rs/resnet-rs-152-i192.tar.gz) |
| ResNet-RS-152 | 224x224 | 86.8 | 82.5 | 96.1 | [config](https://github.com/tensorflow/models/blob/master/official/vision/configs/experiments/image_classification/imagenet_resnetrs152_i224.yaml) \| [ckpt](https://storage.googleapis.com/tf_model_garden/vision/resnet-rs/resnet-rs-152-i224.tar.gz) |
| ResNet-RS-152 | 256x256 | 86.8 | 83.1 | 96.3 | [config](https://github.com/tensorflow/models/blob/master/official/vision/configs/experiments/image_classification/imagenet_resnetrs152_i256.yaml) \| [ckpt](https://storage.googleapis.com/tf_model_garden/vision/resnet-rs/resnet-rs-152-i256.tar.gz) |
| ResNet-RS-200 | 256x256 | 93.4 | 83.5 | 96.6 | [config](https://github.com/tensorflow/models/blob/master/official/vision/configs/experiments/image_classification/imagenet_resnetrs200_i256.yaml) \| [ckpt](https://storage.googleapis.com/tf_model_garden/vision/resnet-rs/resnet-rs-200-i256.tar.gz) |
| ResNet-RS-270 | 256x256 | 130.1 | 83.6 | 96.6 | [config](https://github.com/tensorflow/models/blob/master/official/vision/configs/experiments/image_classification/imagenet_resnetrs270_i256.yaml) \| [ckpt](https://storage.googleapis.com/tf_model_garden/vision/resnet-rs/resnet-rs-270-i256.tar.gz) |
| ResNet-RS-350 | 256x256 | 164.3 | 83.7 | 96.7 | [config](https://github.com/tensorflow/models/blob/master/official/vision/configs/experiments/image_classification/imagenet_resnetrs350_i256.yaml) \| [ckpt](https://storage.googleapis.com/tf_model_garden/vision/resnet-rs/resnet-rs-350-i256.tar.gz) |
| ResNet-RS-350 | 320x320 | 164.3 | 84.2 | 96.9 | [config](https://github.com/tensorflow/models/blob/master/official/vision/configs/experiments/image_classification/imagenet_resnetrs420_i256.yaml) \| [ckpt](https://storage.googleapis.com/tf_model_garden/vision/resnet-rs/resnet-rs-350-i320.tar.gz) |
</details>
### Vision Transformer (ViT)
<details>
We support [ViT](https://arxiv.org/abs/2010.11929) and
[DEIT](https://arxiv.org/abs/2012.12877) implementations. ViT models trained
under the DEIT settings:
model | resolution | Top-1 | Top-5 | Download |
--------- | :--------: | ----: | ----: | :-------: |
ViT-ti16 | 224x224 | 73.4 | 91.9 | [ckpt](https://storage.googleapis.com/tf_model_garden/vision/vit/vit-deit-imagenet-ti16.tar.gz) |
ViT-s16 | 224x224 | 79.4 | 94.7 | [ckpt](https://storage.googleapis.com/tf_model_garden/vision/vit/vit-deit-imagenet-s16.tar.gz) |
ViT-b16 | 224x224 | 81.8 | 95.8 | [ckpt](https://storage.googleapis.com/tf_model_garden/vision/vit/vit-deit-imagenet-b16.tar.gz) |
ViT-l16 | 224x224 | 82.2 | 95.8 | [ckpt](https://storage.googleapis.com/tf_model_garden/vision/vit/vit-deit-imagenet-l16.tar.gz) |
</details>
## Object Detection and Instance Segmentation
### Common Settings and Notes
<details>
* We provide models adopting [ResNet-FPN](https://arxiv.org/abs/1612.03144)
and [SpineNet](https://arxiv.org/abs/1912.05027) backbones based on
detection frameworks:
* [RetinaNet](https://arxiv.org/abs/1708.02002) and
[RetinaNet-RS](https://arxiv.org/abs/2107.00057)
* [Mask R-CNN](https://arxiv.org/abs/1703.06870)
* [Cascade RCNN](https://arxiv.org/abs/1712.00726) and
[Cascade RCNN-RS](https://arxiv.org/abs/2107.00057)
* Models are all trained on [COCO](https://cocodataset.org/) train2017 and
evaluated on [COCO](https://cocodataset.org/) val2017.
* The checkpoints were trained on annotations
[owned and licensed by the COCO Consortium](https://cocodataset.org/#termsofuse)
under a
[Creative Commons Attribution 4.0 License](https://creativecommons.org/licenses/by/4.0/legalcode).
* The COCO Consortium does not own the copyright of the images
corresponding to the annotations. The images are
[made available by Flickr](https://www.flickr.com/creativecommons/) under
various Creative Commons licenses, and users of the images accept full
responsibility for the use of the dataset.
* Training details:
* Models finetuned from [ImageNet](https://www.image-net.org/) pretrained
checkpoints adopt the 12 or 36 epochs schedule. Models trained from
scratch adopt the 350 epochs schedule.
* The default training data augmentation implements horizontal flipping
and scale jittering with a random scale between [0.5, 2.0].
* Unless noted, all models are trained with l2 weight regularization and
ReLU activation.
* We use batch size 256 and stepwise learning rate that decays at the last
30 and 10 epoch.
* We use square image as input by resizing the long side of an image to
the target size then padding the short side with zeros.
</details>
## COCO Object Detection Baselines
### RetinaNet (ImageNet pretrained)
<details>
| Backbone | Resolution | Epochs | FLOPs (B) | Params (M) | Box AP | Download |
| ------------ |:-------------:| -------:|--------------:|-----------:|-------:|---------:|
| R50-FPN | 640x640 | 12 | 97.0 | 34.0 | 34.3 | config|
| R50-FPN | 640x640 | 72 | 97.0 | 34.0 | 36.8 | config \| [ckpt](https://storage.googleapis.com/tf_model_garden/vision/retinanet/retinanet-resnet50fpn.tar.gz) |
</details>
### RetinaNet (Trained from scratch)
<details>
training features including:
* Stochastic depth with drop rate 0.2.
* Swish activation.
| Backbone | Resolution | Epochs | FLOPs (B) | Params (M) | Box AP | Download |
| ------------ |:-------------:| -------:|--------------:|-----------:|--------:|---------:|
| SpineNet-49 | 640x640 | 500 | 85.4| 28.5 | 44.2 | [config](https://github.com/tensorflow/models/blob/master/official/vision/configs/experiments/retinanet/coco_spinenet49_tpu.yaml) \| [ckpt](https://storage.googleapis.com/tf_model_garden/vision/spinenet/spinenet-49-i640.tar.gz) \| [TB.dev](https://tensorboard.dev/experiment/n2UN83TkTdyKZn3slCWulg/#scalars&_smoothingWeight=0)|
| SpineNet-96 | 1024x1024 | 500 | 265.4 | 43.0 | 48.5 | [config](https://github.com/tensorflow/models/blob/master/official/vision/configs/experiments/retinanet/coco_spinenet96_tpu.yaml) \| [ckpt](https://storage.googleapis.com/tf_model_garden/vision/spinenet/spinenet-96-i1024.tar.gz) \| [TB.dev](https://tensorboard.dev/experiment/n2UN83TkTdyKZn3slCWulg/#scalars&_smoothingWeight=0)|
| SpineNet-143 | 1280x1280 | 500 | 524.0 | 67.0 | 50.0 | [config](https://github.com/tensorflow/models/blob/master/official/vision/configs/experiments/retinanet/coco_spinenet143_tpu.yaml) \| [ckpt](https://storage.googleapis.com/tf_model_garden/vision/spinenet/spinenet-143-i1280.tar.gz) \| [TB.dev](https://tensorboard.dev/experiment/n2UN83TkTdyKZn3slCWulg/#scalars&_smoothingWeight=0)|
</details>
### Mobile-size RetinaNet (Trained from scratch):
<details>
| Backbone | Resolution | Epochs | FLOPs (B) | Params (M) | Box AP | Download |
| ----------- | :--------: | -----: | --------: | ---------: | -----: | --------:|
| MobileNetv2 | 256x256 | 600 | - | 2.27 | 23.5 | [config](https://github.com/tensorflow/models/blob/master/official/vision/configs/experiments/retinanet/coco_mobilenetv2_tpu.yaml) |
| Mobile SpineNet-49 | 384x384 | 600 | 1.0 | 2.32 | 28.1 | [config](https://github.com/tensorflow/models/blob/master/official/vision/configs/experiments/retinanet/coco_spinenet49_mobile_tpu.yaml) \| [ckpt](https://storage.googleapis.com/tf_model_garden/vision/retinanet/spinenet49mobile.tar.gz) |
</details>
### YOLOv7 (Trained from scratch)
<details>
| Variant | Resolution | Epochs | FLOPs (B) | Params (M) | Box AP | Download |
| ----------- | :--------: | -----: | --------: | ---------: | -----: | --------:|
| YOLOv7 | 640x640 | 300 | 53.16 | 44.57 | 50.5 | [config](https://github.com/tensorflow/models/blob/master/official/projects/yolo/configs/experiments/yolov7/detection/yolov7.yaml) \| [ckpt](https://storage.googleapis.com/tf_model_garden/vision/yolo/yolov7/yolov7.tar.gz) |
</details>
## Instance Segmentation Baselines
### Mask R-CNN (Trained from scratch)
<details>
| Backbone | Resolution | Epochs | FLOPs (B) | Params (M) | Box AP | Mask AP | Download |
| ------------ |:-------------:| -------:|-----------:|-----------:|-------:|--------:|---------:|
| ResNet50-FPN | 640x640 | 350 | 227.7 | 46.3 | 42.3 | 37.6 | [config](https://github.com/tensorflow/models/blob/master/official/vision/configs/experiments/maskrcnn/r50fpn_640_coco_scratch_tpu4x4.yaml) |
| SpineNet-49 | 640x640 | 350 | 215.7 | 40.8 | 42.6 | 37.9 | [config](https://github.com/tensorflow/models/blob/master/official/vision/configs/experiments/maskrcnn/coco_spinenet49_mrcnn_tpu.yaml) |
| SpineNet-96 | 1024x1024 | 500 | 315.0 | 55.2 | 48.1 | 42.4 | [config](https://github.com/tensorflow/models/blob/master/official/vision/configs/experiments/maskrcnn/coco_spinenet96_mrcnn_tpu.yaml) |
| SpineNet-143 | 1280x1280 | 500 | 498.8 | 79.2 | 49.3 | 43.4 | [config](https://github.com/tensorflow/models/blob/master/official/vision/configs/experiments/maskrcnn/coco_spinenet143_mrcnn_tpu.yaml) |
</details>
### Cascade RCNN-RS (Trained from scratch)
<details>
| Backbone | Resolution | Epochs | Params (M) | Box AP | Mask AP | Download
------------ | :--------: | -----: | ---------: | -----: | ------: | -------:
| SpineNet-49 | 640x640 | 500 | 56.4 | 46.4 | 40.0 | [config](https://github.com/tensorflow/models/blob/master/official/vision/configs/experiments/maskrcnn/coco_spinenet49_cascadercnn_tpu.yaml)|
| SpineNet-96 | 1024x1024 | 500 | 70.8 | 50.9 | 43.8 | [config](https://github.com/tensorflow/models/blob/master/official/vision/configs/experiments/maskrcnn/coco_spinenet96_cascadercnn_tpu.yaml)|
| SpineNet-143 | 1280x1280 | 500 | 94.9 | 51.9 | 45.0 | [config](https://github.com/tensorflow/models/blob/master/official/vision/configs/experiments/maskrcnn/coco_spinenet143_cascadercnn_tpu.yaml)|
</details>
## Semantic Segmentation
* We support [DeepLabV3](https://arxiv.org/pdf/1706.05587.pdf) and
[DeepLabV3+](https://arxiv.org/pdf/1802.02611.pdf) architectures, with
Dilated ResNet backbones.
* Backbones are pre-trained on ImageNet.
### PASCAL-VOC
<details>
| Model | Backbone | Resolution | Steps | mIoU | Download |
| ---------- | :----------------: | :--------: | ----: | ---: | --------:|
| DeepLabV3 | Dilated Resnet-101 | 512x512 | 30k | 78.7 | |
| DeepLabV3+ | Dilated Resnet-101 | 512x512 | 30k | 79.2 | [ckpt](https://storage.googleapis.com/tf_model_garden/vision/deeplabv3plus/dilated-resnet-101-deeplabv3plus.tar.gz) |
</details>
### CITYSCAPES
<details>
| Model | Backbone | Resolution | Steps | mIoU | Download |
| ---------- | :----------------: | :--------: | ----: | ----: | --------:|
| DeepLabV3+ | Dilated Resnet-101 | 1024x2048 | 90k | 78.79 | |
</details>
## Video Classification
### Common Settings and Notes
<details>
* We provide models for video classification with backbones:
* SlowOnly in
[SlowFast Networks for Video Recognition](https://arxiv.org/abs/1812.03982).
* ResNet-3D (R3D) in
[Spatiotemporal Contrastive Video Representation Learning](https://arxiv.org/abs/2008.03800).
* ResNet-3D-RS (R3D-RS) in
[Revisiting 3D ResNets for Video Recognition](https://arxiv.org/pdf/2109.01696.pdf).
* Mobile Video Networks (MoViNets) in
[MoViNets: Mobile Video Networks for Efficient Video Recognition](https://arxiv.org/abs/2103.11511).
* Training and evaluation details (SlowFast and ResNet):
* All models are trained from scratch with vision modality (RGB) for 200
epochs.
* We use batch size of 1024 and cosine learning rate decay with linear warmup
in first 5 epochs.
* We follow [SlowFast](https://arxiv.org/abs/1812.03982) to perform 30-view
evaluation.
</details>
### Kinetics-400 Action Recognition Baselines
<details>
| Model | Input (frame x stride) | Top-1 | Top-5 | Download |
| -------- |:----------------------:|--------:|--------:|---------:|
| SlowOnly | 8 x 8 | 74.1 | 91.4 | [config](https://github.com/tensorflow/models/blob/master/official/vision/configs/experiments/video_classification/k400_slowonly8x8_tpu.yaml) |
| SlowOnly | 16 x 4 | 75.6 | 92.1 | [config](https://github.com/tensorflow/models/blob/master/official/vision/configs/experiments/video_classification/k400_slowonly16x4_tpu.yaml) |
| R3D-50 | 32 x 2 | 77.0 | 93.0 | [config](https://github.com/tensorflow/models/blob/master/official/vision/configs/experiments/video_classification/k400_3d-resnet50_tpu.yaml) |
| R3D-RS-50 | 32 x 2 | 78.2 | 93.7 | [config](https://github.com/tensorflow/models/blob/master/official/vision/configs/experiments/video_classification/k400_resnet3drs_50_tpu.yaml) |
| R3D-RS-101 | 32 x 2 | 79.5 | 94.2 | -
| R3D-RS-152 | 32 x 2 | 79.9 | 94.3 | -
| R3D-RS-200 | 32 x 2 | 80.4 | 94.4 | -
| R3D-RS-200 | 48 x 2 | 81.0 | - | -
| MoViNet-A0-Base | 50 x 5 | 69.40 | 89.18 | -
| MoViNet-A1-Base | 50 x 5 | 74.57 | 92.03 | -
| MoViNet-A2-Base | 50 x 5 | 75.91 | 92.63 | -
| MoViNet-A3-Base | 120 x 2 | 79.34 | 94.52 | -
| MoViNet-A4-Base | 80 x 3 | 80.64 | 94.93 | -
| MoViNet-A5-Base | 120 x 2 | 81.39 | 95.06 | -
</details>
### Kinetics-600 Action Recognition Baselines
<details>
| Model | Input (frame x stride) | Top-1 | Top-5 | Download |
| -------- |:----------------------:|--------:|--------:|---------:|
| SlowOnly | 8 x 8 | 77.3 | 93.6 | [config](https://github.com/tensorflow/models/blob/master/official/vision/configs/experiments/video_classification/k600_slowonly8x8_tpu.yaml) |
| R3D-50 | 32 x 2 | 79.5 | 94.8 | [config](https://github.com/tensorflow/models/blob/master/official/vision/configs/experiments/video_classification/k600_3d-resnet50_tpu.yaml) |
| R3D-RS-200 | 32 x 2 | 83.1 | - | -
| R3D-RS-200 | 48 x 2 | 83.8 | - | -
| MoViNet-A0-Base | 50 x 5 | 72.05 | 90.92 | [config](https://github.com/tensorflow/models/blob/master/official/projects/movinet/configs/yaml/movinet_a0_k600_8x8.yaml) |
| MoViNet-A1-Base | 50 x 5 | 76.69 | 93.40 | [config](https://github.com/tensorflow/models/blob/master/official/projects/movinet/configs/yaml/movinet_a1_k600_8x8.yaml) |
| MoViNet-A2-Base | 50 x 5 | 78.62 | 94.17 | [config](https://github.com/tensorflow/models/blob/master/official/projects/movinet/configs/yaml/movinet_a2_k600_8x8.yaml) |
| MoViNet-A3-Base | 120 x 2 | 81.79 | 95.67 | [config](https://github.com/tensorflow/models/blob/master/official/projects/movinet/configs/yaml/movinet_a3_k600_8x8.yaml) |
| MoViNet-A4-Base | 80 x 3 | 83.48 | 96.16 | [config](https://github.com/tensorflow/models/blob/master/official/projects/movinet/configs/yaml/movinet_a4_k600_8x8.yaml) |
| MoViNet-A5-Base | 120 x 2 | 84.27 | 96.39 | [config](https://github.com/tensorflow/models/blob/master/official/projects/movinet/configs/yaml/movinet_a5_k600_8x8.yaml) |
</details>
## More Documentations
Please read through the references in the
[examples/starter](examples/starter).
|