File size: 5,547 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93528c6
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Backbones configurations."""
import dataclasses
from typing import List, Optional, Tuple

from official.modeling import hyperparams


@dataclasses.dataclass
class Transformer(hyperparams.Config):
  """Transformer config."""
  mlp_dim: int = 1
  num_heads: int = 1
  num_layers: int = 1
  attention_dropout_rate: float = 0.0
  dropout_rate: float = 0.0


@dataclasses.dataclass
class VisionTransformer(hyperparams.Config):
  """VisionTransformer config."""
  model_name: str = 'vit-b16'
  # pylint: disable=line-too-long
  pooler: str = 'token'  # 'token', 'gap' or 'none'. If set to 'token', an extra classification token is added to sequence.
  # pylint: enable=line-too-long
  representation_size: int = 0
  hidden_size: int = 1
  patch_size: int = 16
  transformer: Transformer = dataclasses.field(default_factory=Transformer)
  init_stochastic_depth_rate: float = 0.0
  original_init: bool = True
  pos_embed_shape: Optional[Tuple[int, int]] = None
  # If output encoded tokens sequence when pooler is `none`.
  output_encoded_tokens: bool = True
  # If output encoded tokens 2D feature map.
  output_2d_feature_maps: bool = False

  # Adding Layerscale to each Encoder block https://arxiv.org/abs/2204.07118
  layer_scale_init_value: float = 0.0
  # Transformer encoder spatial partition dimensions.
  transformer_partition_dims: Optional[Tuple[int, int, int, int]] = None


@dataclasses.dataclass
class ResNet(hyperparams.Config):
  """ResNet config."""
  model_id: int = 50
  depth_multiplier: float = 1.0
  stem_type: str = 'v0'
  se_ratio: float = 0.0
  stochastic_depth_drop_rate: float = 0.0
  scale_stem: bool = True
  resnetd_shortcut: bool = False
  replace_stem_max_pool: bool = False
  bn_trainable: bool = True


@dataclasses.dataclass
class DilatedResNet(hyperparams.Config):
  """DilatedResNet config."""
  model_id: int = 50
  output_stride: int = 16
  multigrid: Optional[List[int]] = None
  stem_type: str = 'v0'
  last_stage_repeats: int = 1
  se_ratio: float = 0.0
  stochastic_depth_drop_rate: float = 0.0
  resnetd_shortcut: bool = False
  replace_stem_max_pool: bool = False


@dataclasses.dataclass
class EfficientNet(hyperparams.Config):
  """EfficientNet config."""
  model_id: str = 'b0'
  se_ratio: float = 0.0
  stochastic_depth_drop_rate: float = 0.0


@dataclasses.dataclass
class MobileNet(hyperparams.Config):
  """Mobilenet config."""
  model_id: str = 'MobileNetV2'
  filter_size_scale: float = 1.0
  stochastic_depth_drop_rate: float = 0.0
  output_stride: Optional[int] = None
  output_intermediate_endpoints: bool = False


@dataclasses.dataclass
class SpineNet(hyperparams.Config):
  """SpineNet config."""
  model_id: str = '49'
  stochastic_depth_drop_rate: float = 0.0
  min_level: int = 3
  max_level: int = 7


@dataclasses.dataclass
class SpineNetMobile(hyperparams.Config):
  """SpineNet config."""
  model_id: str = '49'
  stochastic_depth_drop_rate: float = 0.0
  se_ratio: float = 0.2
  expand_ratio: int = 6
  min_level: int = 3
  max_level: int = 7
  # If use_keras_upsampling_2d is True, model uses UpSampling2D keras layer
  # instead of optimized custom TF op. It makes model be more keras style. We
  # set this flag to True when we apply QAT from model optimization toolkit
  # that requires the model should use keras layers.
  use_keras_upsampling_2d: bool = False


@dataclasses.dataclass
class RevNet(hyperparams.Config):
  """RevNet config."""
  # Specifies the depth of RevNet.
  model_id: int = 56


@dataclasses.dataclass
class MobileDet(hyperparams.Config):
  """Mobiledet config."""
  model_id: str = 'MobileDetCPU'
  filter_size_scale: float = 1.0


@dataclasses.dataclass
class Backbone(hyperparams.OneOfConfig):
  """Configuration for backbones.

  Attributes:
    type: 'str', type of backbone be used, one of the fields below.
    resnet: resnet backbone config.
    dilated_resnet: dilated resnet backbone for semantic segmentation config.
    revnet: revnet backbone config.
    efficientnet: efficientnet backbone config.
    spinenet: spinenet backbone config.
    spinenet_mobile: mobile spinenet backbone config.
    mobilenet: mobilenet backbone config.
    mobiledet: mobiledet backbone config.
    vit: vision transformer backbone config.
  """
  type: Optional[str] = None
  resnet: ResNet = dataclasses.field(default_factory=ResNet)
  dilated_resnet: DilatedResNet = dataclasses.field(
      default_factory=DilatedResNet
  )
  revnet: RevNet = dataclasses.field(default_factory=RevNet)
  efficientnet: EfficientNet = dataclasses.field(default_factory=EfficientNet)
  spinenet: SpineNet = dataclasses.field(default_factory=SpineNet)
  spinenet_mobile: SpineNetMobile = dataclasses.field(
      default_factory=SpineNetMobile
  )
  mobilenet: MobileNet = dataclasses.field(default_factory=MobileNet)
  mobiledet: MobileDet = dataclasses.field(default_factory=MobileDet)
  vit: VisionTransformer = dataclasses.field(default_factory=VisionTransformer)