File size: 5,354 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93528c6
 
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Common configurations."""

import dataclasses
from typing import List, Optional

# Import libraries

from official.core import config_definitions as cfg
from official.modeling import hyperparams


@dataclasses.dataclass
class TfExampleDecoder(hyperparams.Config):
  """A simple TF Example decoder config."""
  regenerate_source_id: bool = False
  mask_binarize_threshold: Optional[float] = None
  attribute_names: List[str] = dataclasses.field(default_factory=list)


@dataclasses.dataclass
class TfExampleDecoderLabelMap(hyperparams.Config):
  """TF Example decoder with label map config."""
  regenerate_source_id: bool = False
  mask_binarize_threshold: Optional[float] = None
  label_map: str = ''


@dataclasses.dataclass
class DataDecoder(hyperparams.OneOfConfig):
  """Data decoder config.

  Attributes:
    type: 'str', type of data decoder be used, one of the fields below.
    simple_decoder: simple TF Example decoder config.
    label_map_decoder: TF Example decoder with label map config.
  """
  type: Optional[str] = 'simple_decoder'
  simple_decoder: TfExampleDecoder = dataclasses.field(
      default_factory=TfExampleDecoder
  )
  label_map_decoder: TfExampleDecoderLabelMap = dataclasses.field(
      default_factory=TfExampleDecoderLabelMap
  )


@dataclasses.dataclass
class RandAugment(hyperparams.Config):
  """Configuration for RandAugment."""
  num_layers: int = 2
  magnitude: float = 10
  cutout_const: float = 40
  translate_const: float = 10
  magnitude_std: float = 0.0
  prob_to_apply: Optional[float] = None
  exclude_ops: List[str] = dataclasses.field(default_factory=list)


@dataclasses.dataclass
class AutoAugment(hyperparams.Config):
  """Configuration for AutoAugment."""
  augmentation_name: str = 'v0'
  cutout_const: float = 100
  translate_const: float = 250


@dataclasses.dataclass
class RandomErasing(hyperparams.Config):
  """Configuration for RandomErasing."""
  probability: float = 0.25
  min_area: float = 0.02
  max_area: float = 1 / 3
  min_aspect: float = 0.3
  max_aspect = None
  min_count = 1
  max_count = 1
  trials = 10


@dataclasses.dataclass
class MixupAndCutmix(hyperparams.Config):
  """Configuration for MixupAndCutmix."""
  mixup_alpha: float = .8
  cutmix_alpha: float = 1.
  prob: float = 1.0
  switch_prob: float = 0.5
  label_smoothing: float = 0.1


@dataclasses.dataclass
class Augmentation(hyperparams.OneOfConfig):
  """Configuration for input data augmentation.

  Attributes:
    type: 'str', type of augmentation be used, one of the fields below.
    randaug: RandAugment config.
    autoaug: AutoAugment config.
  """
  type: Optional[str] = None
  randaug: RandAugment = dataclasses.field(default_factory=RandAugment)
  autoaug: AutoAugment = dataclasses.field(default_factory=AutoAugment)


@dataclasses.dataclass
class NormActivation(hyperparams.Config):
  activation: str = 'relu'
  use_sync_bn: bool = True
  norm_momentum: float = 0.99
  norm_epsilon: float = 0.001


@dataclasses.dataclass
class PseudoLabelDataConfig(cfg.DataConfig):
  """Psuedo Label input config for training."""
  input_path: str = ''
  data_ratio: float = 1.0  # Per-batch ratio of pseudo-labeled to labeled data.
  is_training: bool = True
  dtype: str = 'float32'
  shuffle_buffer_size: int = 10000
  cycle_length: int = 10
  aug_rand_hflip: bool = True
  aug_type: Optional[
      Augmentation] = None  # Choose from AutoAugment and RandAugment.
  file_type: str = 'tfrecord'

  # Keep for backward compatibility.
  aug_policy: Optional[str] = None  # None, 'autoaug', or 'randaug'.
  randaug_magnitude: Optional[int] = 10


@dataclasses.dataclass
class TFLitePostProcessingConfig(hyperparams.Config):
  """TFLite Post Processing config for inference."""
  max_detections: int = 200
  max_classes_per_detection: int = 5
  # Regular NMS run in a multi-class fashion and is slow. Setting it to False
  # uses class-agnostic NMS, which is faster.
  use_regular_nms: bool = False
  nms_score_threshold: float = 0.1
  nms_iou_threshold: float = 0.5
  # Whether to normalize coordinates of anchors to [0, 1]. If setting to True,
  # coordinates of output boxes is also normalized but latency increases.
  normalize_anchor_coordinates: Optional[bool] = False
  # Whether to omit the final nms placeholder op. If set to True, the output
  # will be a tuple of boxes, scores result right before the NMS operation.
  omit_nms: Optional[bool] = False
  # The number of detections per class when using regular NMS.
  detections_per_class: Optional[int] = 5
  # Box scaling factors. It should agree with `box_coder_weights` defined in
  # `DetectionGenerator`, which is in the format of [y, x, w, h].
  y_scale: float = 1.0
  x_scale: float = 1.0
  w_scale: float = 1.0
  h_scale: float = 1.0