Spaces:
Runtime error
Runtime error
File size: 17,752 Bytes
5672777 93528c6 5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""RetinaNet configuration definition."""
import dataclasses
import os
from typing import Optional, List, Sequence, Union
from official.core import config_definitions as cfg
from official.core import exp_factory
from official.modeling import hyperparams
from official.modeling import optimization
from official.modeling.hyperparams import base_config
from official.vision.configs import common
from official.vision.configs import decoders
from official.vision.configs import backbones
# pylint: disable=missing-class-docstring
# Keep for backward compatibility.
@dataclasses.dataclass
class TfExampleDecoder(common.TfExampleDecoder):
"""A simple TF Example decoder config."""
# Keep for backward compatibility.
@dataclasses.dataclass
class TfExampleDecoderLabelMap(common.TfExampleDecoderLabelMap):
"""TF Example decoder with label map config."""
# Keep for backward compatibility.
@dataclasses.dataclass
class DataDecoder(common.DataDecoder):
"""Data decoder config."""
@dataclasses.dataclass
class Parser(hyperparams.Config):
num_channels: int = 3
match_threshold: float = 0.5
unmatched_threshold: float = 0.5
aug_rand_hflip: bool = False
aug_scale_min: float = 1.0
aug_scale_max: float = 1.0
skip_crowd_during_training: bool = True
max_num_instances: int = 100
# Can choose AutoAugment and RandAugment.
aug_type: Optional[common.Augmentation] = None
pad: bool = True
keep_aspect_ratio: bool = True
# Keep for backward compatibility. Not used.
aug_policy: Optional[str] = None
@dataclasses.dataclass
class DataConfig(cfg.DataConfig):
"""Input config for training.
Attributes:
weights: Sampling weights for each corresponding input_path. If used, then
input_path must be a config with matching keys.
"""
input_path: Union[Sequence[str], str, base_config.Config] = ''
weights: Optional[base_config.Config] = None
global_batch_size: int = 0
is_training: bool = False
dtype: str = 'bfloat16'
decoder: common.DataDecoder = dataclasses.field(
default_factory=common.DataDecoder
)
parser: Parser = dataclasses.field(default_factory=Parser)
shuffle_buffer_size: int = 10000
file_type: str = 'tfrecord'
@dataclasses.dataclass
class Anchor(hyperparams.Config):
num_scales: int = 3
aspect_ratios: List[float] = dataclasses.field(
default_factory=lambda: [0.5, 1.0, 2.0])
anchor_size: float = 4.0
@dataclasses.dataclass
class Losses(hyperparams.Config):
loss_weight: float = 1.0
focal_loss_alpha: float = 0.25
focal_loss_gamma: float = 1.5
huber_loss_delta: float = 0.1
box_loss_weight: int = 50
l2_weight_decay: float = 0.0
@dataclasses.dataclass
class AttributeHead(hyperparams.Config):
name: str = ''
type: str = 'regression'
size: int = 1
# Attribute heads of the same "prediction_tower_name" will share the same
# prediction tower. If unspecified, they will use their individual prediction
# tower.
prediction_tower_name: str = ''
# If `num_convs` or `num_filters` are not provided, it will use the parameters
# from RetinaNetHead. When several attributes share the head through setting
# the same `prediction_tower_name`, we only respect `num_convs` and
# `num_filters` from the first attribute that use the shared prediction tower
# name.
num_convs: Optional[int] = None
num_filters: Optional[int] = None
@dataclasses.dataclass
class RetinaNetHead(hyperparams.Config):
num_convs: int = 4
num_filters: int = 256
use_separable_conv: bool = False
attribute_heads: List[AttributeHead] = dataclasses.field(default_factory=list)
share_classification_heads: bool = False
share_level_convs: Optional[bool] = True
@dataclasses.dataclass
class DetectionGenerator(hyperparams.Config):
apply_nms: bool = True
pre_nms_top_k: int = 5000
pre_nms_score_threshold: float = 0.05
nms_iou_threshold: float = 0.5
max_num_detections: int = 100
nms_version: str = 'v2' # `v2`, `v1`, `batched`, or `tflite`.
use_cpu_nms: bool = False
soft_nms_sigma: Optional[float] = None # Only works when nms_version='v1'.
# When nms_version = `tflite`, values from tflite_post_processing need to be
# specified. They are compatible with the input arguments used by TFLite
# custom NMS op and override above parameters.
tflite_post_processing: common.TFLitePostProcessingConfig = dataclasses.field(
default_factory=common.TFLitePostProcessingConfig
)
# Return decoded boxes/scores even if apply_nms is set `True`.
return_decoded: Optional[bool] = None
# Only works when nms_version='v2'.
use_class_agnostic_nms: Optional[bool] = False
# Weights or scales when encode and decode boxes coordinates. For Faster RCNN,
# the open-source implementation recommends using [10.0, 10.0, 5.0, 5.0].
box_coder_weights: Optional[List[float]] = None
@dataclasses.dataclass
class RetinaNet(hyperparams.Config):
num_classes: int = 0
input_size: List[int] = dataclasses.field(default_factory=list)
min_level: int = 3
max_level: int = 7
anchor: Anchor = dataclasses.field(default_factory=Anchor)
backbone: backbones.Backbone = dataclasses.field(
default_factory=lambda: backbones.Backbone( # pylint: disable=g-long-lambda
type='resnet', resnet=backbones.ResNet()
)
)
decoder: decoders.Decoder = dataclasses.field(
default_factory=lambda: decoders.Decoder(type='fpn', fpn=decoders.FPN())
)
head: RetinaNetHead = dataclasses.field(default_factory=RetinaNetHead)
detection_generator: DetectionGenerator = dataclasses.field(
default_factory=DetectionGenerator
)
norm_activation: common.NormActivation = dataclasses.field(
default_factory=common.NormActivation
)
@dataclasses.dataclass
class ExportConfig(hyperparams.Config):
output_normalized_coordinates: bool = False
cast_num_detections_to_float: bool = False
cast_detection_classes_to_float: bool = False
output_intermediate_features: bool = False
@dataclasses.dataclass
class RetinaNetTask(cfg.TaskConfig):
model: RetinaNet = dataclasses.field(default_factory=RetinaNet)
train_data: DataConfig = dataclasses.field(
default_factory=lambda: DataConfig(is_training=True)
)
validation_data: DataConfig = dataclasses.field(
default_factory=lambda: DataConfig(is_training=False)
)
losses: Losses = dataclasses.field(default_factory=Losses)
init_checkpoint: Optional[str] = None
init_checkpoint_modules: Union[
str, List[str]] = 'all' # all, backbone, and/or decoder
annotation_file: Optional[str] = None
per_category_metrics: bool = False
export_config: ExportConfig = dataclasses.field(default_factory=ExportConfig)
# If set, the COCO metrics will be computed.
use_coco_metrics: bool = True
# If set, the Waymo Open Dataset evaluator would be used.
use_wod_metrics: bool = False
# If set, freezes the backbone during training.
# TODO(crisnv) Add paper link when available.
freeze_backbone: bool = False
# Sets maximum number of boxes to be evaluated by coco eval api.
max_num_eval_detections: int = 100
@exp_factory.register_config_factory('retinanet')
def retinanet() -> cfg.ExperimentConfig:
"""RetinaNet general config."""
return cfg.ExperimentConfig(
task=RetinaNetTask(),
restrictions=[
'task.train_data.is_training != None',
'task.validation_data.is_training != None'
])
COCO_INPUT_PATH_BASE = 'coco'
COCO_TRAIN_EXAMPLES = 118287
COCO_VAL_EXAMPLES = 5000
@exp_factory.register_config_factory('retinanet_resnetfpn_coco')
def retinanet_resnetfpn_coco() -> cfg.ExperimentConfig:
"""COCO object detection with RetinaNet."""
train_batch_size = 256
eval_batch_size = 8
steps_per_epoch = COCO_TRAIN_EXAMPLES // train_batch_size
config = cfg.ExperimentConfig(
runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
task=RetinaNetTask(
init_checkpoint='gs://cloud-tpu-checkpoints/vision-2.0/resnet50_imagenet/ckpt-28080',
init_checkpoint_modules='backbone',
annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
'instances_val2017.json'),
model=RetinaNet(
num_classes=91,
input_size=[640, 640, 3],
norm_activation=common.NormActivation(use_sync_bn=False),
min_level=3,
max_level=7),
losses=Losses(l2_weight_decay=1e-4),
train_data=DataConfig(
input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
is_training=True,
global_batch_size=train_batch_size,
parser=Parser(
aug_rand_hflip=True, aug_scale_min=0.8, aug_scale_max=1.2)),
validation_data=DataConfig(
input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
is_training=False,
global_batch_size=eval_batch_size)),
trainer=cfg.TrainerConfig(
train_steps=72 * steps_per_epoch,
validation_steps=COCO_VAL_EXAMPLES // eval_batch_size,
validation_interval=steps_per_epoch,
steps_per_loop=steps_per_epoch,
summary_interval=steps_per_epoch,
checkpoint_interval=steps_per_epoch,
optimizer_config=optimization.OptimizationConfig({
'optimizer': {
'type': 'sgd',
'sgd': {
'momentum': 0.9
}
},
'learning_rate': {
'type': 'stepwise',
'stepwise': {
'boundaries': [
57 * steps_per_epoch, 67 * steps_per_epoch
],
'values': [
0.32 * train_batch_size / 256.0,
0.032 * train_batch_size / 256.0,
0.0032 * train_batch_size / 256.0
],
}
},
'warmup': {
'type': 'linear',
'linear': {
'warmup_steps': 500,
'warmup_learning_rate': 0.0067
}
}
})),
restrictions=[
'task.train_data.is_training != None',
'task.validation_data.is_training != None'
])
return config
@exp_factory.register_config_factory('retinanet_spinenet_coco')
def retinanet_spinenet_coco() -> cfg.ExperimentConfig:
"""COCO object detection with RetinaNet using SpineNet backbone."""
train_batch_size = 256
eval_batch_size = 8
steps_per_epoch = COCO_TRAIN_EXAMPLES // train_batch_size
input_size = 640
config = cfg.ExperimentConfig(
runtime=cfg.RuntimeConfig(mixed_precision_dtype='float32'),
task=RetinaNetTask(
annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
'instances_val2017.json'),
model=RetinaNet(
backbone=backbones.Backbone(
type='spinenet',
spinenet=backbones.SpineNet(
model_id='49',
stochastic_depth_drop_rate=0.2,
min_level=3,
max_level=7)),
decoder=decoders.Decoder(
type='identity', identity=decoders.Identity()),
anchor=Anchor(anchor_size=3),
norm_activation=common.NormActivation(
use_sync_bn=True, activation='swish'),
num_classes=91,
input_size=[input_size, input_size, 3],
min_level=3,
max_level=7),
losses=Losses(l2_weight_decay=4e-5),
train_data=DataConfig(
input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
is_training=True,
global_batch_size=train_batch_size,
parser=Parser(
aug_rand_hflip=True, aug_scale_min=0.1, aug_scale_max=2.0)),
validation_data=DataConfig(
input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
is_training=False,
global_batch_size=eval_batch_size)),
trainer=cfg.TrainerConfig(
train_steps=500 * steps_per_epoch,
validation_steps=COCO_VAL_EXAMPLES // eval_batch_size,
validation_interval=steps_per_epoch,
steps_per_loop=steps_per_epoch,
summary_interval=steps_per_epoch,
checkpoint_interval=steps_per_epoch,
optimizer_config=optimization.OptimizationConfig({
'optimizer': {
'type': 'sgd',
'sgd': {
'momentum': 0.9
}
},
'learning_rate': {
'type': 'stepwise',
'stepwise': {
'boundaries': [
475 * steps_per_epoch, 490 * steps_per_epoch
],
'values': [
0.32 * train_batch_size / 256.0,
0.032 * train_batch_size / 256.0,
0.0032 * train_batch_size / 256.0
],
}
},
'warmup': {
'type': 'linear',
'linear': {
'warmup_steps': 2000,
'warmup_learning_rate': 0.0067
}
}
})),
restrictions=[
'task.train_data.is_training != None',
'task.validation_data.is_training != None',
'task.model.min_level == task.model.backbone.spinenet.min_level',
'task.model.max_level == task.model.backbone.spinenet.max_level',
])
return config
@exp_factory.register_config_factory('retinanet_mobile_coco')
def retinanet_spinenet_mobile_coco() -> cfg.ExperimentConfig:
"""COCO object detection with mobile RetinaNet."""
train_batch_size = 256
eval_batch_size = 8
steps_per_epoch = COCO_TRAIN_EXAMPLES // train_batch_size
input_size = 384
config = cfg.ExperimentConfig(
runtime=cfg.RuntimeConfig(mixed_precision_dtype='float32'),
task=RetinaNetTask(
annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
'instances_val2017.json'),
model=RetinaNet(
backbone=backbones.Backbone(
type='spinenet_mobile',
spinenet_mobile=backbones.SpineNetMobile(
model_id='49',
stochastic_depth_drop_rate=0.2,
min_level=3,
max_level=7,
use_keras_upsampling_2d=False)),
decoder=decoders.Decoder(
type='identity', identity=decoders.Identity()),
head=RetinaNetHead(num_filters=48, use_separable_conv=True),
anchor=Anchor(anchor_size=3),
norm_activation=common.NormActivation(
use_sync_bn=True, activation='swish'),
num_classes=91,
input_size=[input_size, input_size, 3],
min_level=3,
max_level=7),
losses=Losses(l2_weight_decay=3e-5),
train_data=DataConfig(
input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
is_training=True,
global_batch_size=train_batch_size,
parser=Parser(
aug_rand_hflip=True, aug_scale_min=0.1, aug_scale_max=2.0)),
validation_data=DataConfig(
input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
is_training=False,
global_batch_size=eval_batch_size)),
trainer=cfg.TrainerConfig(
train_steps=600 * steps_per_epoch,
validation_steps=COCO_VAL_EXAMPLES // eval_batch_size,
validation_interval=steps_per_epoch,
steps_per_loop=steps_per_epoch,
summary_interval=steps_per_epoch,
checkpoint_interval=steps_per_epoch,
optimizer_config=optimization.OptimizationConfig({
'optimizer': {
'type': 'sgd',
'sgd': {
'momentum': 0.9
}
},
'learning_rate': {
'type': 'stepwise',
'stepwise': {
'boundaries': [
575 * steps_per_epoch, 590 * steps_per_epoch
],
'values': [
0.32 * train_batch_size / 256.0,
0.032 * train_batch_size / 256.0,
0.0032 * train_batch_size / 256.0
],
}
},
'warmup': {
'type': 'linear',
'linear': {
'warmup_steps': 2000,
'warmup_learning_rate': 0.0067
}
}
})),
restrictions=[
'task.train_data.is_training != None',
'task.validation_data.is_training != None',
])
return config
|